: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

PROGRAMMABLE TIMER

- 24 FLIP-FLOP STAGES - COUNTS FROM 2^{0} TO 2^{24}
- LAST 16 STAGES SELECTABLE BY BCD SELECT CODE
- GROUP SELECT INDICATES ONE OR MORE PRIORITY INPUTS
- QUIESCENT CURRENT SPECIFIED UP TO 20V
- STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS
- 5V, 10V AND 15V PARAMETRIC RATINGS
- INPUT LEAKAGE CURRENT
$I_{I}=100 n A(M A X) A T V_{D D}=18 V T_{A}=25^{\circ} \mathrm{C}$
- 100\% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC JESD13B "STANDARD SPECIFICATIONS FOR DESCRIPTION OF B SERIES CMOS DEVICES"

DESCRIPTION

HCF4536B is a monolithic integrated circuit fabricated in Metal Oxide Semiconductor technology available in DIP package.
HCF4536B is a programmable timer consisting of 24 ripple-binary counter stages. Ths salient feature of this device is its flexibilit!' The device can count from 1 to 2^{24} or the first 3 stc.ges can be bypassed to allow an output. sile rable by a 4-bit code, from any one of the rem aning 16 stages. It

ORDER CODES

PACKAGE	TUBE	1\&R
DIP	HCF4536BEY	

can be driven by an extfrnal clock or an RC oscillator that can r」 constructed using on-chip components. Input IN1 serves as either the external clock ir ut or the input to the on-chip RC oscillatcr. ©UT1 and OUT2 are connection termi $\mathrm{I}_{\mathrm{i}} \mathrm{s}$ for the external RC components. In andition, an on-chip monostable circuit is provided to allow a variable pulse width output. Various timing functions can be achieved using combinations of these capabilities. A logic "1" on the 8-BYPASS input enables a bypass of the first 8 stages and makes stage 9 the first counter stage of the last 16 stages. Selection of 1 of 16 outputs is accomplished by the decoder and the BCD inputs $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D . MONO IN is the timing input

PIN CONNECTION

for the on-chip monostable oscillator. Grounding of the MONO IN terminal through a resistor of 10 $\mathrm{K} \Omega$ or higher, disables the one shot circuit and connects the decoder directly to the DECODE OUT terminal. A resistor to V_{DD} and a capacitor to ground from the MONO IN terminal enables the
one-shot circuit and controls its pulse width. A fast test mode is enabled by a logic "1" on 8-BYPASS, SET, and RESET. This mode divides the 24-stage counter into three 8 -stage sections to facilitate a fast test sequence.

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
$9,10,11,12$	A, B, C, D	Binary Select Input
1	SET	Set input
2	RESET	Reset Input
15	MONO IN	Monostable OscillatorTim- ing Input
6	8BYPASS	8Bypass input(bypass the first 8 stages)
3	IN1	External Clock Input or RC oscillator Input
4,5	OUT1, OUT2	Outputs
13	DECODE OUT	Decode Out Terminal
7	CLOCK INHIBIT	Clock Inhibit Input
14	OSC. INHIBIT	Oscillator Inhibit Input
8	VSS	Negative Supply Voltage
16	VDD	Positive Supply Voltage

FUNCTIONAL DIAGRAM

TRUTH TABLE

In1	Set	Reset	Clock Inh	Osc. Inh	Out1	Out2	Decode Out
Г	L	L	L	L	-	L	No Change
L	L	L	L	L	L	-	Advance to Next State
X	H	L	L	L	L	H	H
X	L	H	L	L	L	H	L
X	L	L	H	L			No Change
L	L	L	L	X	L	H	No Change
H	L	L	L	-	L	-	Advance to Next State

X : Don't Care

DECODE OUT SELECTION TABLE

D	C	B	A	NUMBER OF STAGES IN DIVIDER CHAIN	
				8 -BYPASS $=0$	8 -BYPASS = 1
L	L	L	L	9	1 -
L	L	L	H	10	2
L	L	H	L	11	3
L	L	H	H	12	4
L	H	L	L	13	5
L	H	L	H	14	6
L	H	H	L	15	7
L	H	H	H	16	8
H	L	L	L	17	9
H	L	L	H	18	10
H	L	H	L	19	11
H	L	H	H	20	12
H	H	L	L	21	13
H	H	L	H	22	14
H	H	H	L	23	15
H	H	H	H	24	16

BLOCK DIAGRAM

LOGIC DIAGRAM

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	-0.5 to +22	V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
I_{I}	DC Input Current	± 10	mA
P_{D}	Power Dissipation per Package	200	mW
	Power Dissipation per Output Transistor	100	mW
$\mathrm{~T}_{\mathrm{op}}$	Operating Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.
All voltage values are referred to V_{SS} pin voltage.

HCF4536B

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	3 to 20	V
$\mathrm{~V}_{1}$	Input Voltage	0 to V_{DD}	V
T_{op}	Operating Temperature	-55 to 125	${ }^{\circ} \mathrm{C}$

DC SPECIFICATIONS

Symbol	Parameter	Test Condition				Value							Unit
		$\begin{gathered} V_{1} \\ (V) \end{gathered}$	V_{0} (V)	$\begin{gathered} \left\|\mathrm{IO}_{\mathrm{O}}\right\| \\ (\mu \mathrm{A}) \end{gathered}$	$V_{D D}$ (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
						Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
I_{L}	Quiescent Current	0/5			5		0.04	5		150		150	$\mu \mathrm{A}$
		0/10			10		0.04	10		300		300	
		0/15			15		0.04	20		600		600	
		0/20			20		0.08	100		3000		3000	
V_{OH}	High Level Output Voltage	0/5		<1	5	4.95			4.95		4.95	\square	V
		0/10		<1	10	9.95			9.95		9.95	\cdots	
		0/15		<1	15	14.95			14.95	λ	14.95		
V_{OL}	Low Level Output Voltage	5/0		<1	5		0.05			0.05		0.05	V
		10/0		<1	10		0.05			0.05		0.05	
		15/0		<1	15		0.05			0.05		0.05	
V_{IH}	High Level Input Voltage		0.5/4.5	<1	5	3.5		,	3.5		3.5		V
			1/9	<1	10	7	\$	\sim	7		7		
			1.5/13.5	<1	15	11	I		11		11		
V_{IL}	Low Level Input Voltage		4.5/0.5	<1	5	\bigcirc		1.5		1.5		1.5	V
			9/1	<1	10)		3		3		3	
			13.5/1.5	<1	15			4		4		4	
I_{OH}	Output Drive Current	0/5	2.5	<1	5	-1.36	-3.2		-1.1		-1.1		mA
		0/5	4.6	<1	5	-0.44	-1		-0.36		-0.36		
		0/10	9.5	<1	10	-1.1	-2.6		-0.9		-0.9		
		0/15	13.5	<1	15	-3.0	-6.8		-2.4		-2.4		
${ }_{\text {IOL }}$	Output Sink Current	0/5	0.4	<1	5	0.44	1		0.36		0.36		mA
		0/10	0.5	<1	10	1.1	2.6		0.9		0.9		
		0/15	1.5	<1	15	3.0	6.8		2.4		2.4		
1	Input Leakage Current	0/18	Any Input		18		$\pm 10^{-5}$	± 0.1		± 1		± 1	$\mu \mathrm{A}$
C	Input Capacitance		Any Input				5	7.5					pF

The Noise Margin for both " 1 " and " 0 " level is: 1 V min. with $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, 2 V min. with $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, 2.5 \mathrm{~V}$ min. with $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$

DYNAMIC ELECTRICAL CHARACTERISTICS $\left(T_{a m b}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{~K} \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}\right)$

Symbol	Parameter	Test Condition		Value (*)			Unit
		V_{DD} (V)		Min.	Typ.	Max.	
$\mathrm{t}_{\text {PLH }} \mathrm{t}_{\text {PHL }}$	Propagation Delay Time (Clock to Q1, 8-Bypass High)	5			1	2	$\mu \mathrm{s}$
		10			0.5	1	
		15			0.35	0.7	
	Propagation Delay Time (Clock to Q1, 8-Bypass Low)	5			2.5	5	$\mu \mathrm{s}$
		10			0.8	0.6	
		15			0.6	1.2	
	Propagation Delay Time (Clock to Q16)	5			4	8	$\mu \mathrm{s}$
		10			1.5	3	
		15			1	2	
	Propagation Delay Time (Qn to $\mathrm{Qn}+1$)	5			150	300	ns
		10			75	150	
		15			50	100	
${ }_{\text {tpLH }}$	Propagation Delay Time	5			300	600	ns
		10			125	250	
		15			80	160	
$\mathrm{t}_{\text {PHL }}$	Reset to Qn	5			3	6	$\mu \mathrm{s}$
		10		-	1	2	
		15		,	0.75	1.5	
$\mathrm{t}_{\text {THL }} \mathrm{t}_{\text {TLH }}$	Transition Time	5			100	200	ns
		10	$\times 1$		50	100	
		15	()		40	80	
tw	Pulse Width Clock	5			200	400	ns
		10	$\bigcirc 5$		75	150	
		15	\bigcirc		50	100	
	Set	5	-		200	400	ns
		10			100	200	
		15			60	120	
	Reset	5			3	6	$\mu \mathrm{s}$
		10			1	2	
		15			0.75	1.5	
	Recovery Time Set	5			2.5	5	$\mu \mathrm{s}$
		10			1	2	
		15			0.6	1.6	
	Reset	5			3.5	7	$\mu \mathrm{s}$
		10			1.5	3	
		15			1	2	
$\int \mathrm{t}_{\mathrm{r}, \mathrm{t}} \mathrm{t}_{\mathrm{f}}$	Clock Input Rise or Fall Time	5		Unlimited			$\mu \mathrm{s}$
		10					
		15					
f_{CL}	Maximum Clock Input Frequency	5		0.5	1		MHz
		10		1.5	3		
		15		2.5	5		

[^0]
TYPICAL APPLICATIONS

Time Internal Configuration Using External Clock; Set and Clock Inhibit Functions

Time Internal Configuration Using Ext. Ck; Reset and Output Monostable to Achieve a Pulse Out

Time Internal Configuration Using On-Chip RC oscillator and Reset Input to Initiate Time Interval

Use of HCF4098B and HCF4536B to get Decode Pulse 8 Clock Pulses after Reset Pulses

TIMING DIAGRAM

Inputs							OunCTIONAL TEST SEQUENCE				
In 1							Set	Reset	8-Bypass	Decade Out Q1 Thru Q24	All 24 steps are in reset mode

FUNCTIONAL TEST SEQUENCE

Test function has been included for the reduction of test time required to exercise all 24 counter stages. This test function divides the counter into three 8 -stage section and 255 counts are loaded in each of the 8 -stage sections in parallel. All
flip-flops are now at a "H". The counter is now returned to the normal 24-steps in series configuration. One more pulse is entered into $\ln 1$ which will cause the counter to ripple from an all "H" state to an all "L" state.

TEST CIRCUIT

WAVEFORM : PROPAGATION DELAY TIMES, PULSE WIDTH CLOCK

Plastic DIP-16 (0.25) MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
B	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20		0.335	
E		2.54			0.100	
e		17.78			0.700	
e3			7.1			0.280
F			5.3			0.130
I						
L						0.201
Z						

P001C

SO-16 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			1.75			0.068
a1	0.1		0.2	0.003		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
C		0.5			0.019	
c1	45° (typ.)					
D	9.8		10	0.385		0.393
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
M			0.62			0.024
S	8° (max.)					

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
© http://www.st.com

[^0]: (*) Typical temperature coefficient for all V_{DD} value is $0.3 \% /{ }^{\circ} \mathrm{C}$.

