

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

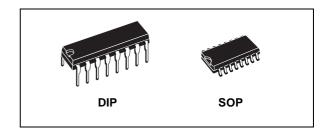
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

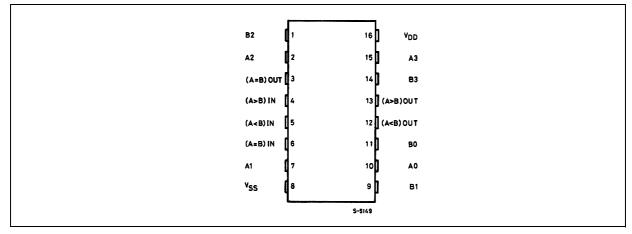
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



4-BIT MAGNITUDE COMPARATOR

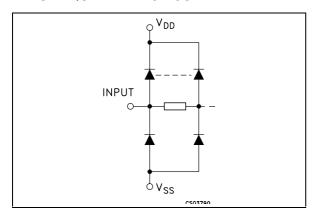
- EXPANSION TO 8, 12, 16....4 N BITS BY CASCADING UNIT
- MEDIUM SPEED OPERATION : COMPARES TWO 4-BIT WORDS IN 180ns (Typ.) at 10V
- STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS
- QUIESCENT CURRENT SPECIFIED UP TO 20V
- 5V. 10V AND 15V PARAMETRIC RATINGS
- INPUT LEAKAGE CURRENT $I_1 = 100$ nA (MAX) AT $V_{DD} = 18$ V $T_A = 25$ °C
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC JESD13B "STANDARD SPECIFICATIONS FOR DESCRIPTION OF B SERIES CMOS DEVICES"

HCF4585B is a monolithic integrated circuit fabricated in Metal Oxide Semiconductor technology available in DIP and SOP packages. HCF4585B is a 4-bit magnitude comparator designed for use in computer and logic applications that require the comparison of two 4-bit words. This logic circuit determines whether one 4-bit word (Binary or BCD) is "less than", "equal to" or "greater than" a second 4-bit word.



ORDER CODES

PACKAGE	TUBE	T&R
DIP	HCF4585BEY	
SOP	HCF4585BM1	HCF4585M013TR

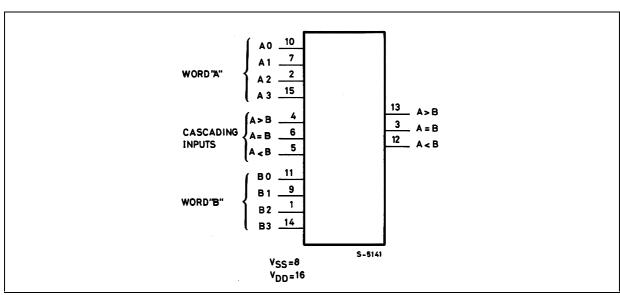

HCF4585B has eight comparing inputs (A3, B3 through A0, B0), three outputs (A<B, A=B, A>B) and three cascading inputs (A<B, A=B, A>B) that permit system designers to expand the comparator function to 8, 12, 16...4N bits. When a single HCF4585B is used, the cascading inputs are connected as follows: (A<B) = low, (A=B) = high, (A>B) = high. Cascading these units for comparison of more than 4 bits is accomplished as shown in Typical application.

PIN CONNECTION

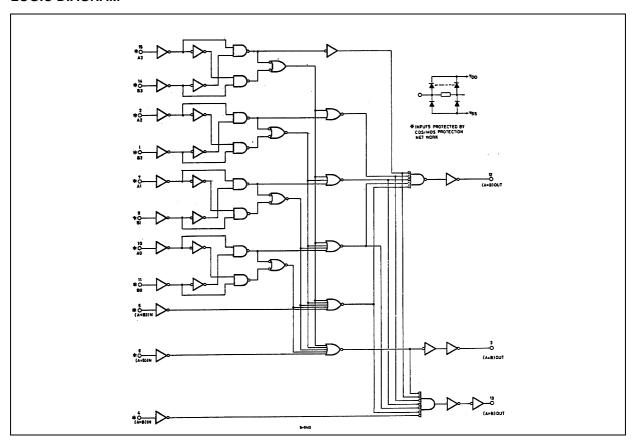
October 2002 1/9

IINPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION


PIN No	SYMBOL	NAME AND FUNCTION
10, 7, 2, 15	A0 to A3	Word A Inputs
11, 9, 1, 14	B0 to B3	Word B Inputs
13, 3, 12	A>B, A=B, A <b< td=""><td>Outputs</td></b<>	Outputs
4, 6, 5	A>B, A=B, A <b< td=""><td>Cascading Inputs</td></b<>	Cascading Inputs
8	V _{SS}	Negative Supply Voltage
16	V_{DD}	Positive Supply Voltage

TRUTH TABLE


		INP	UTS				OUTPUTS				
	COMP	CASCADING			'	•					
A3, B3	A2, B2	A1, B1	A0, B0	A <b< th=""><th>A=B</th><th>A>B</th><th>A<b< th=""><th>A=B</th><th>A>B</th></b<></th></b<>	A=B	A>B	A <b< th=""><th>A=B</th><th>A>B</th></b<>	A=B	A>B		
A3 > B3	Х	Х	Х	Х	Х	Н	L	L	Н		
A3 = B3	A2 > B2	Х	Х	Х	Х	Н	L	L	Н		
A3 = B3	A2 = B2	A1 > B1	Х	Х	Х	Н	L	L	Н		
A3 = B3	A2 = B2	A1 = B1	A0 > B0	Х	Х	Н	L	L	Н		
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	L	Н	L	L	Н		
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	Н	Х	L	Н	L		
A3 = B3	A2 = B2	A1 = B1	A0 = B0	Н	L	Х	Н	L	L		
A3 = B3	A2 = B2	A1 = B1	A0 < B0	Х	Х	Х	Н	L	L		
A3 = B3	A2 = B2	A1 < B1	Х	Х	Х	Х	Н	L	L		
A3 = B3	A2 < B2	Х	Х	Х	Х	Х	Н	L	L		
A3 < B3	Х	Х	Х	Х	Х	Х	Н	L	L		

X : Don't Care

FUNCTIONAL DIAGRAM

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	-0.5 to +22	V
V _I	DC Input Voltage	-0.5 to V _{DD} + 0.5	V
l _l	DC Input Current	± 10	mA
P _D	Power Dissipation per Package	200	mW
	Power Dissipation per Output Transistor	100	mW
T _{op}	Operating Temperature	-55 to +125	°C
T _{stg}	Storage Temperature	-65 to +150	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

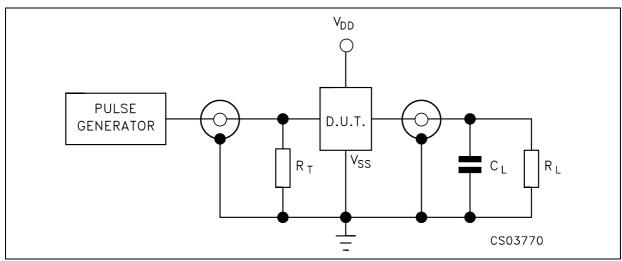
All voltage values are referred to V_{SS} pin voltage.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{DD}	Supply Voltage	3 to 20	V
V _I	Input Voltage	0 to V _{DD}	V
T _{op}	Operating Temperature	-55 to 125	°C

DC SPECIFICATIONS

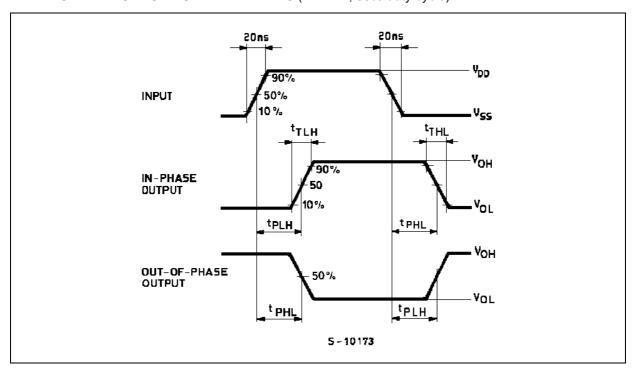
			Test Con	dition		Value							
Symbol Parameter		VI	v _I v _o	I _O	V _{DD}	T _A = 25°C		-40 to 85°C		-55 to 125°C		Unit	
		(V)	(V)	(μ A)	(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
IL	Quiescent Current	0/5			5		0.04	5		150		150	
		0/10			10		0.04	10		300		300	μΑ
		0/15			15		0.04	20		600		600	μΛ
		0/20			20		0.08	100		3000		3000	
V _{OH}	High Level Output	0/5		<1	5	4.95			4.95		4.95		
	Voltage	0/10		<1	10	9.95			9.95		9.95		V
		0/15		<1	15	14.95			14.95		14.95		
V_{OL}	Low Level Output	5/0		<1	5		0.05			0.05		0.05	
	Voltage	10/0		<1	10		0.05			0.05		0.05	V
		15/0		<1	15		0.05			0.05		0.05	
V_{IH}	High Level Input		0.5/4.5	<1	5	3.5			3.5		3.5		
	Voltage		1/9	<1	10	7			7		7		V
			1.5/13.5	<1	15	11			11		11		
V_{IL}	Low Level Input		4.5/0.5	<1	5			1.5		1.5		1.5	
	Voltage		9/1	<1	10			3		3		3	V
			13.5/1.5	<1	15			4		4		4	
I_{OH}	Output Drive	0/5	2.5	<1	5	-1.36	-3.2		-1.1		-1.1		
	Current	0/5	4.6	<1	5	-0.44	-1		-0.36		-0.36		mA
		0/10	9.5	<1	10	-1.1	-2.6		-0.9		-0.9		ША
		0/15	13.5	<1	15	-3.0	-6.8		-2.4		-2.4		
I_{OL}	Output Sink	0/5	0.4	<1	5	0.44	1		0.36		0.36		
	Current	0/10	0.5	<1	10	1.1	2.6		0.9		0.9		mΑ
		0/15	1.5	<1	15	3.0	6.8		2.4		2.4		
I _I	Input Leakage Current	0/18	Any In	put	18		±10 ⁻⁵	±0.1		±1		±1	μΑ
Cl	Input Capacitance		Any In	put			5	7.5					pF


The Noise Margin for both "1" and "0" level is: 1V min. with V_{DD} =5V, 2V min. with V_{DD} =10V, 2.5V min. with V_{DD} =15V

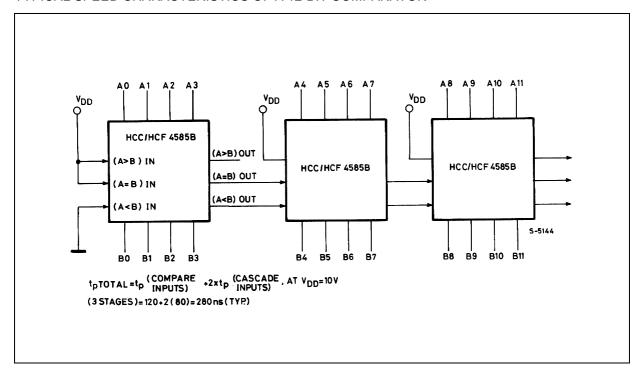
$\textbf{DYNAMIC ELECTRICAL CHARACTERISTICS} \; (T_{amb} = 25^{\circ}\text{C}, \;\; C_{L} = 50 \text{pF}, \; R_{L} = 200 \text{K}\Omega, \;\; t_{f} = t_{f} = 20 \; \text{ns})$

Cymphol	Parameter		Test Condition	'	Unit		
Symbol Parameter		V _{DD} (V)		Min.	Тур.	Max.	
t _{PHL} t _{PLH}	Propagation Delay	5			300	600	
	Time	10	Comparing Inputs to Outputs		125	250	ns
		15			80	160	
t _{PHL} t _{PLH}	Propagation Delay	5			200	400	
	Time	10	Cascading Inputs to Outputs		80	160	ns
		15			60	120	
t _{THL} t _{TLH}	Transition Time	5			100	200	
		10			50	100	ns
		15			40	80	

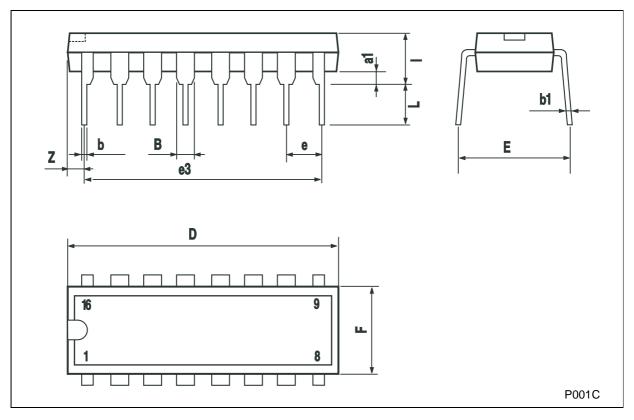
^(*) Typical temperature coefficient for all V_{DD} value is 0.3 %/°C.


TEST CIRCUIT

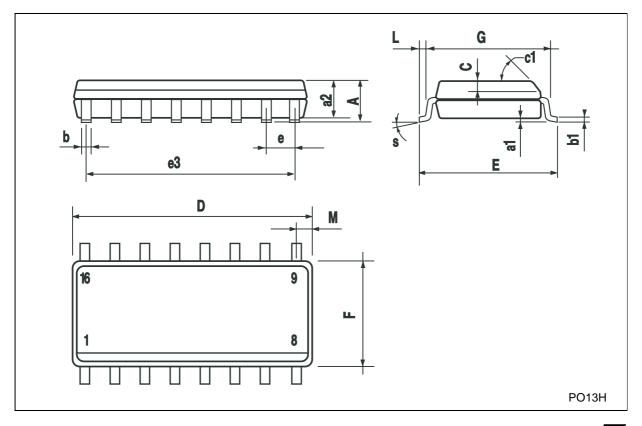
 C_L = 50pF or equivalent (includes jig and probe capacitance) R_L = 200K Ω


 $R_T^2 = Z_{OUT}$ of pulse generator (typically 50 Ω)

WAVEFORM: PROPAGATION DELAY TIMES (f=1MHz; 50% duty cycle)


TYPICAL APPLICATION

TYPICAL SPEED CHARACTERISTICS OF A 12-BIT COMPARATOR


Plastic DIP-16 (0.25) MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
a1	0.51			0.020				
В	0.77		1.65	0.030		0.065		
b		0.5			0.020			
b1		0.25			0.010			
D			20			0.787		
E		8.5			0.335			
е		2.54			0.100			
e3		17.78			0.700			
F			7.1			0.280		
I			5.1			0.201		
L		3.3			0.130			
Z			1.27			0.050		

SO-16 MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
Α			1.75			0.068		
a1	0.1		0.2	0.003		0.007		
a2			1.65			0.064		
b	0.35		0.46	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.019			
c1			45°	(typ.)				
D	9.8		10	0.385		0.393		
E	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		8.89			0.350			
F	3.8		4.0	0.149		0.157		
G	4.6		5.3	0.181		0.208		
L	0.5		1.27	0.019		0.050		
M			0.62			0.024		
S			8° (I	max.)		•		

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

© http://www.st.com

