

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

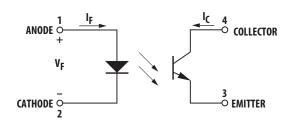
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

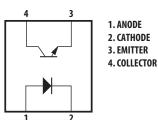
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HCPL-181

Phototransistor Optocoupler SMD Mini-Flat Type


Data Sheet

Description


The HCPL-181 contains a light emitting diode optically coupled to a phototransistor. It is packaged in a 4-pin miniflat SMD package with a 2.0 mm profile. The small dimension of this product allows significant space saving. The package volume is 30% smaller than that of conventional DIP type. Input-output isolation voltage is 3750 Vrms. Response time, $t_{\rm r}$, is typically 4 μs and minimum CTR is 50% at input current of 5 mA.

Schematic

Functional Diagram

PIN NO. AND INTERNAL CONNECTION DIAGRAM

Features

- Current Transfer Ratio (CTR: min. 50% at I_F = 5 mA, V_{CE} = 5 V)
- High input-output isolation voltage (V_{iso} = 3750 Vrms)
- High collector-emitter voltage (V_{CEO} = 80 V)
- Response time $(t_r: typ., 4 \mu s \text{ at } V_{CE} = 2 \text{ V}, I_C = 2 \text{ mA}, R_L = 100 \Omega)$
- Mini-flat package (2.0 mm profile) in tape and reel package
- UL approved
- CSA approved
- IEC/EN/DIN EN 60747-5-2 approved
- Options available:
 - IEC/EN/DIN EN 60747-5-2 approvals (060)

Applications

- I/O interfaces for computers
- System appliances, measuring instruments
- Signal transmission between circuits of different potentials and impedances
- Feedback circuit in power supply

Ordering Information

HCPL-181 is UL Recognized with 3750 Vrms for 1 minute per UL1577 and is approved under CSA Component Acceptance Notice #5, File CA 88324

	RoHS Compliant Option									
Part Number	Rank '0' 50% <ctr <600%</ctr 	Rank 'A' 80% <ctr <160%</ctr 	Rank 'B' 130% <ctr <260%</ctr 	Rank 'C' 200% <ctr <400%</ctr 	Rank 'D' 300% <ctr <600%</ctr 	Package	Surface Mount	Tape & Reel	IEC/EN/DIN EN 60747-5-2	Quantity
HCPL- 181	-000E	-00AE	-00BE	-00CE	-00DE	SO-4	Х	Х		3000 pcs per reel
	-060E	-06AE	-06BE	-06CE	-06DE	SO-4	Х	Х	Х	3000 pcs per reel

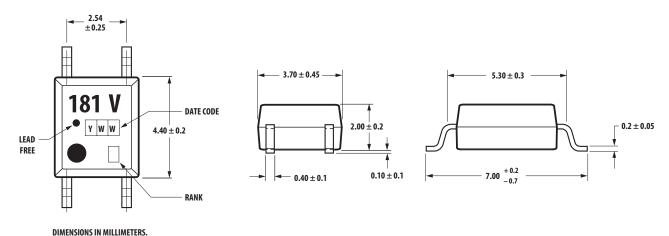
To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:

HCPL-181-00AE to order product of Miniflat-4 DC Surface Mount package in Tape and Reel packaging with 80%<CTR<160% and RoHS compliant.

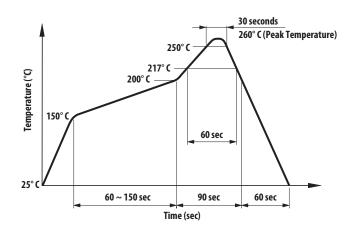

Example 2:

HCPL-181-060E to order product of Miniflat-4 DC Surface Mount package in Tape and Reel packaging with 50%<CTR<600%, IEC/EN/DIN EN60747-5-2 Safety Approval and RoHS compliant.


Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.

Package Outline Drawings

HCPL-181-000E



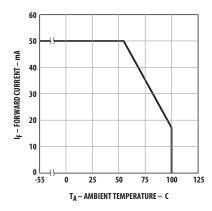
HCPL-181-060E

Solder Reflow Temperature Profile

- 1. One-time soldering reflow is recommended within the condition of temperature and time profile shown at right.
- 2. When using another soldering method such as infrared ray lamp, the temperature may rise partially in the mold of the device. Keep the temperature on the package of the device within the condition of (1) above.

Note: Non-halide flux should be used.

Absolute Maximum Ratings ($T_A = 25^{\circ}C$)


3 (N	<u> </u>
Storage Temperature, T _S	−55°C to +155°C
Operating Temperature, T _A	−55°C to +100°C
Lead Solder Temperature, max. (1.6 mm below seating plane)	260°C for 10 s
Average Forward Current, I _F	50 mA
Reverse Input Voltage, V _R	6 V
Input Power Dissipation, P _I	70 mW
Collector Current, I _C	50 mA
Collector-Emitter Voltage, V _{CEO}	80 V
Emitter-Collector Voltage, V _{ECO}	6 V
Collector Power Dissipation	150 mW
Total Power Dissipation	170 mW
Isolation Voltage, V _{iso} (AC for 1 minute, R.H. = 40 ~ 60%)	3750 Vrms

Rank Mark	CTR (%)	Conditions
A	80 ~ 160	$I_F = 5 \text{ mA},$
В	130 ~ 260	$V_{CE} = 5 \text{ V, T}_{A} = 25^{\circ}\text{C}$
С	200 ~ 400	
D	300 ~ 600	_

Electrical Specifications ($T_A = 25^{\circ}C$)

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Forward Voltage	V _F	-	1.2	1.4	V	I _F = 20 mA
Reverse Current	I _R	-	_	10	μΑ	V _R = 4 V
Terminal Capacitance	Ct	-	30	250	pF	V = 0, f = 1 KHz
Collector Dark Current	I _{CEO}	-	_	100	nA	V _{CE} = 20 V
Collector-Emitter Breakdown Voltage	BV _{CEO}	80	_	_	V	$I_C = 0.1 \text{ mA, } I_F = 0$
Emitter-Collector Breakdown Voltage	BV _{ECO}	6	_	_	V	$I_E = 10 \mu A, I_F = 0$
Collector Current	lc	2.5	_	30	mA	$I_F = 5 \text{ mA}, V_{CE} = 5 \text{ V}$
*Current Transfer Ratio	CTR	50	_	600	%	
Collector-Emitter Saturation Voltage	V _{CE(sat)}	-	_	0.2	V	$I_F = 20 \text{ mA}, I_C = 1 \text{ mA}$
Response Time (Rise)	t _r	-	4	18	μs	$V_{CC} = 2 \text{ V, } I_C = 2 \text{ mA}$
Response Time (Fall)	t _f	-	3	18	μs	$R_L = 100 \Omega$
Isolation Resistance	R _{iso}	5 x 10 ¹⁰	1 x 10 ¹¹	-	Ω	DC 500 V 40 ~ 60% R.H.
Floating Capacitance	C _f	_	0.6	1.0	pF	V = 0, f = 1 MHz

* CTR =
$$\frac{I_C}{I_F}$$
 x 100%

 $\label{eq:Figure 1.} \textbf{Forward current vs. temperature.}$

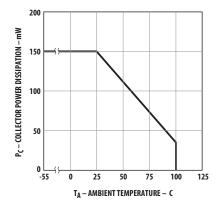


Figure 2. Collector power dissipation vs. temperature.

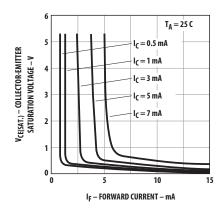


Figure 3. Collector-emitter saturation voltage vs. forward current.

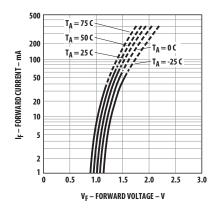


Figure 4. Forward current vs. forward voltage.

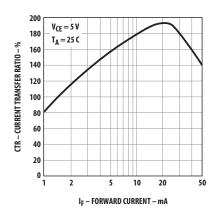


Figure 5. Current transfer ratio vs. forward current.

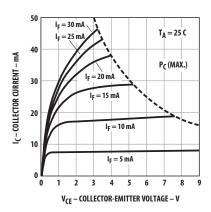


Figure 6. Collector current vs. collector-emitter voltage.

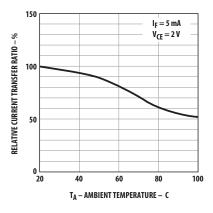


Figure 7. Relative current transfer ratio vs. temperature.

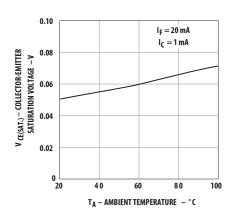


Figure 8. Collector-emitter saturation voltage vs. temperature.

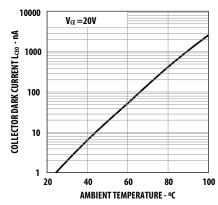


Figure 9. Collector dark current vs. temperature.

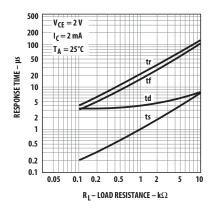
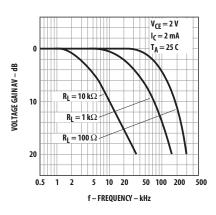
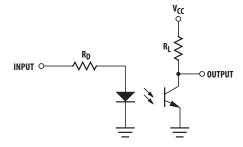
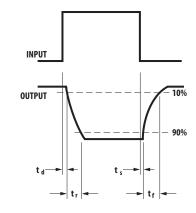
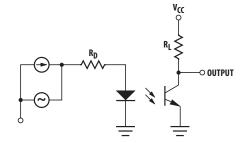


Figure 10. Response time vs. load resistance.


Figure 11. Frequency response.

Test Circuit for Response Time

Test Circuit for Frequency Response

