: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

HCPL-4562, HCNW4562

High Bandwidth, Analog/Video Optocouplers

Data Sheet

Lead (Pb) Free RoHS 6 fully compliant
RoHS 6 fully compliant options available; -xoxE denotes a lead-free product

Description

The HCPL-4562 and HCNW4562 optocouplers provide wide bandwidth isolation for analog signals. They are ideal for video isolation when combined with their application circuit (Figure4). High linearity and low phase shift are achieved through an AIGaAs LED combined with a high speed detector. These single channel optocouplers are available in 8-Pin DIP and Widebody package configurations.

Functional Diagram

Features

- Wide bandwidth ${ }^{[1]}$:

17 MHz (HCPL-4562)
9 MHz (HCNW4562)

- High voltage gain ${ }^{[1]}$:
2.0 (HCPL-4562)
3.0 (HCNW4562)
- Low G_{v} temperature coefficient: $-0.3 \% /{ }^{\circ} \mathrm{C}$
- Highly linear at low drive currents
- High-speed AIGaAs emitter
- Safety approval:

UL Recognized

- 3750Vrms for 1 minute (5000 V rms for 1 minute for HCPL-4562\#020 and HCNW4562) per UL 1577
CSA Approved
IEC/EN/DIN EN 60747-5-2 Approved
$-\mathrm{V}_{\text {IORM }}=1414 \mathrm{~V}_{\text {peak }}$ for HCNW4562
- Available in 8-pin DIP and widebody packages

Applications

- Video isolation for the following standards/formats: NTSC, PAL, SECAM, S-VHS, ANALOG RGB
- Low drive current feedback element in switching power supplies, e.g., for ISDN networks
- A/D converter signal isolation
- Analog signal ground isolation
- High voltage insulation

Selection Guide

Single Channel Packages	
8-Pin DIP (300 Mil)	Widebody (400 Mil)
HCPL-4562	HCNW4562

Ordering Information

HCPL-4562 is UL Recognized with 3750 Vrms for 1 minute per UL1577 unless otherwise specified. HCNW4562 is UL Recognized with 5000 Vrms for 1 minute per UL1577.

Part Number	Option		Package	Surface Mount	Gull Wing	Tape \& Reel	UL 5000 Vrms/ 1 Minute rating	IEC/EN/DIN EN 60747-5-2	Quantity
	RoHS Compliant	non RoHS Compliant							
HCPL-4562	-000E	no option	300 mil DIP-8						50 per tube
	-300E	\#300		X	X				50 per tube
	-500E	\#500		X	X	X			1000 per reel
	-020E	\#020					X		50 per tube
	-320E	\#320		X	X		X		50 per tube
	-520E	\#520		X	X	X	X		1000 per reel
	-060E	\#060						$\mathrm{X}^{[1]}$	50 per tube
HCNW4562	-000E	no option	400 mil Widebody DIP-8				X	$\mathrm{X}^{[2]}$	42 per tube
	-300E	\#300		X	X		X	$\mathrm{X}^{[2]}$	42 per tube
	-500E	\#500		X	X	X	X	$\mathrm{X}^{[2]}$	750 per reel

Notes:

1. IEC/EN/DIN EN 60747-5-2 $\mathrm{V}_{\text {IORM }}=630 \mathrm{~V}_{\text {peak }}$ Safety Approval.
2. IEC/EN/DIN EN 60747-5-2 $\mathrm{V}_{\text {IORM }}=1414 \mathrm{~V}_{\text {peak }}$ Safety Approval.

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:
HCPL-4562-520E to order product of Gull Wing Surface Mount package in Tape and Reel packaging with UL 5000 Vrms/1 minute rating and RoHS compliant.
Example 2:
HCNW4562 to order product of 8-Pin Widebody DIP package in Tube packaging with IEC/EN/DIN EN 60747-5$2 \mathrm{~V}_{\text {IORM }}=1414 \mathrm{~V}_{\text {peak }}$ Safety Approval and UL 5000 Vrms/1 minute rating and non RoHS compliant.

Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.

Remarks: The notation '\#XXX' is used for existing products, while (new) products launched since July 15, 2001 and RoHS compliant will use '-XXXE.'

Schematic

Package Outline Drawings

8-Pin DIP Package (HCPL-4562)

DIMENSIONS IN MILLIMETERS AND (INCHES). * MARKING CODE LETTER FOR OPTION NUMBERS "L" = OPTION 020
OPTION NUMBERS 300 AND 500 NOT MARKED.
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.

8-Pin DIP Package with Gull Wing Surface Mount Option 300 (HCPL-4562)

8-Pin Widebody DIP Package (HCNW4562)

NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.

8-Pin Widebody DIP Package with Gull Wing Surface Mount Option 300 (HCNW4562)

NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.

Solder Reflow Temperature Profile

Note: Non-halide flux should be used.

Recommended Pb-Free IR Profile

Note: Non-halide flux should be used.

* Recommended peak temperature for widebody

400 mils package is $245^{\circ} \mathrm{C}$

Regulatory Information

The devices contained in this data sheet have been approved by the following organizations:

UL

Recognized under UL 1577, Component Recognition Program, File E55361.

CSA

Approved under CSA Component Acceptance Notice \#5, File CA 88324.

IEC/EN/DIN EN 60747-5-2
Approved under:
IEC 60747-5-2:1997 + A1:2002
EN 60747-5-2:2001 + A1:2002
DIN EN 60747-5-2 (VDE 0884 Teil 2):2003-01
(HCNW4562 only)

Insulation and Safety Related Specifications

Symbol	8-Pin DIP (300 Mil) Value	Widebody (400 Mil) Value	Units	Conditions	
Minimum External Air Gap (External Clearance)	L(101)	7.1	9.6	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (External Creepage)	L(102)	7.4	10.0	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)		0.08	1.0	mm	Through insulation distance, conductor to conductor, usually the direct distance between the photo- emitter and photodetector inside the optocoupler cavity.
Minimum Internal Tracking (Internal Creepage)	NA	4.0	mm	Measured from input terminals to output terminals, along internal cavity.	
Tracking Resistance (Comparative	CTI	200	200	Volts	DIN IEC 112/VDE 0303 Part 1
Tracking Index)		IIla	IIIa		Material Group (DIN VDE 0110, 1/89, Table 1)
Isolation Group					

Option 300 - surface mount classification is Class A in accordance with CECC 00802.

IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics (HCNW4562 ONLY)

Description	Symbol	Characteristic	Units
Installation classification per DIN VDE 0110/1.89, Table 1 for rated mains voltage $\leq 600 \mathrm{~V}$ rms		I-IV	
for rated mains voltage $\leq 1000 \mathrm{~V}$ rms		I-III	
Climatic Classification		55/85/21	
Pollution Degree (DIN VDE 0110/1.89)		2	
Maximum Working Insulation Voltage	$V_{\text {IORM }}$	1414	$\mathrm{V}_{\text {peak }}$
Input to Output Test Voltage, Method b* $V_{\text {IORM }} \times 1.875=V_{\text {PR, }}, 100 \%$ Production Test with $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	2652	$\mathrm{V}_{\text {peak }}$
Input to Output Test Voltage, Method a* $\mathrm{V}_{\text {IORM }} \times 1.5=\mathrm{V}_{\text {PR, }}$ Type and sample test, $\mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	2121	$\mathrm{V}_{\text {peak }}$
Highest Allowable Overvoltage* (Transient Overvoltage, $\mathrm{t}_{\text {ini }}=10 \mathrm{sec}$)	$V_{\text {Іотм }}$	8000	$\mathrm{V}_{\text {peak }}$
Safety Limiting Values (Maximum values allowed in the event of a failure, also see Figure 17, Thermal Derating curve.) Case Temperature Input Current Output Power		$\begin{aligned} & 150 \\ & 400 \\ & 700 \\ & \hline \end{aligned}$	${ }^{\circ} \mathrm{C}$ mA mW
Insulation Resistance at $\mathrm{T}_{5}, \mathrm{~V}_{10}=500 \mathrm{~V}$	Rs	$\geq 10^{9}$	Ω

*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section IEC/EN/DIN EN 60747-5-2, for a detailed description.
Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.

Absolute Maximum Ratings

Parameter	Symbol	Device	Min.	Max.	Units	Note
Storage Temperature	T_{5}		-55	125	${ }^{\circ} \mathrm{C}$	
Operating Temperature	$\mathrm{T}_{\text {A }}$		-40	85	${ }^{\circ} \mathrm{C}$	
Average Forward Input Current	$I_{\text {Favg) }}$	HCPL-4562		12	mA	
		HCNW4562		25		
Peak Forward Input Current	$\mathrm{I}_{\text {(PEAK) }}$	HCPL-4562		18.6	mA	
		HCNW4562		40		
Effective Input Current	$\mathrm{I}_{\text {(EFF) }}$	HCPL-4562		12.9	mA rms	
Reverse LED Input Voltage (Pin 3-2)	$V_{\text {R }}$	HCPL-4562		1.8	V	
		HCNW4562		3		
Input Power Dissipation	PIN	HCNW4562		40	mW	
Average Output Current (Pin 6)	$\mathrm{l}_{\text {(AVG) }}$			8	mA	
Peak Output Current (Pin 6)	$\mathrm{l}_{\text {OPEAK }}$			16	mA	
Emitter-Base Reverse Voltage (Pin 5-7)	$V_{\text {EBR }}$			5	V	
Supply Voltage (Pin 8-5)	$\mathrm{V}_{\text {c }}$		-0.3	30	V	
Output Voltage (Pin 6-5)	V_{0}		-0.3	20	V	
Base Current (Pin 7)	I_{B}			5	mA	
Output Power Dissipation	Po			100	mW	2
Lead Solder Temperature	$\mathrm{T}_{\text {LS }}$	HCPL-4562		260	${ }^{\circ} \mathrm{C}$	
1.6 mm Below Seating Plane, 10 Seconds up to Seating Plane, 10 Seconds		HCNW4562		260	${ }^{\circ} \mathrm{C}$	
Reflow Temperature Profile	$\mathrm{T}_{\text {RP }}$	Option 300		Pkage ngs Se		

Recommended Operating Conditions

Parameter	Symbol	Device	Min.	Max.	Units	Note
Operating Temperature	T_{A}	HCPL-4562	-10	70	${ }^{\circ} \mathrm{C}$	
Quiescent Input Current	$\mathrm{I}_{\text {fo }}$	HCPL-4562		6	mA	
		HCNW4562		10		
Peak Input Current	$\mathrm{I}_{\text {(PPAK }}$	HCPL-4562		10	mA	
		HCNW4562		17		

Electrical Specifications (DC)

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=6 \mathrm{~mA}$ for HCPL-4562 and $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ for HCNW4562 (i.e., Recommended I_{FQ}) unless otherwise specified.

Small Signal Characteristics (AC)
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=6 \mathrm{~mA}$ for HCPL-4562 and $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ for HCNW4562 (i.e., Recommended I_{Fo}) unless otherwise specified.

Package Characteristics

All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Sym.	Device	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Input-Output	$\mathrm{V}_{\text {ISO }}$	HCPL-4562	3750			V rms	$\begin{aligned} & \hline R H \leq 50 \%, \\ & t=1 \mathrm{~min} ., \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	5,12 5,13 5,13	
Momentary		HCNW4562	5000						
Withstand Voltage*		$\begin{gathered} \text { HCPL-4562 } \\ \text { (Option 020) } \end{gathered}$	5000						
Input-Output Resistance	$\mathrm{R}_{1-\mathrm{O}}$	HCPL-4562		10^{12}		Ω	$\mathrm{V}_{1-0}=500 \mathrm{Vdc}$		5
		HCNW4562	10^{12}	10^{13}			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
			10^{11}				$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		
Input-Output	$\mathrm{C}_{1.0}$	HCPL-4562		0.6		pF	$\mathrm{f}=1 \mathrm{MHz}$		5
Capacitance		HCNW4562		0.5	0.6				

*The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Related Characteristics Table (if applicable), your equipment level safety specification or Avago Application Note 1074 entitled "Optocoupler Input-Output Endurance Voltage," publication number 5963-2203E.

Notes:

1. When used in the circuit of Figure 1 or Figure $4 ; G_{V}=V_{\text {OUT }} / V_{I N} I_{\mathrm{FQ}}=6 \mathrm{~mA}$ (HCPL-4562), $I_{\mathrm{FQ}}=10 \mathrm{~mA}$ (HCNW4562).
2. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}(\mathrm{HCPL}-4562)$.
3. Maximum variation from the best fit line of $I_{P B} v s$. I_{F} expressed as a percentage of the peak-to-peak full scale output.
4. CURRENT TRANSFER RATIO (CTR) is defined as the ratio of output collector current, I_{0}, to the forward LED input current, $I_{\text {, }}$ times 100%.
5. Device considered a two-terminal device: Pins $1,2,3$, and 4 shorted together and Pins $5,6,7$, and 8 shorted together.
6. Flat-band, small-signal voltage gain.
7. The frequency at which the gain is 3 dB below the flat-band gain.
8. Differential gain is the change in the small-signal gain of the optocoupler at 3.58 MHz as the bias level is varied over a given range.
9. Differential phase is the change in the small-signal phase response of the optocoupler at 3.58 MHz as the bias level is varied over a given range.
10. TOTAL HARMONIC DISTORTION (THD) is defined as the square root of the sum of the square of each harmonic distortion component. The THD of the isolated video circuit is measured using a $2.6 \mathrm{k} \Omega$ load in series with the 50Ω input impedance of the spectrum analyzer.
11. ISOLATION MODE REJECTION RATIO (IMRR), a measure of the optocoupler's ability to reject signals or noise that may exist between input and output terminals, is defined by $20 \log _{10}\left[\left(\mathrm{~V}_{\text {OUT }} / V_{\text {IN }}\right) /\left(\mathrm{V}_{\text {OUT }} / V_{\text {IM }}\right)\right]$, where $\mathrm{V}_{\text {IM }}$ is the isolation mode voltage signal.
12. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage $\geq 4500 \mathrm{~V}$ rms for 1 second (leakage detection current limit, $I_{-0} \leq 5 \mu \mathrm{~A}$). This test is performed before the 100% Production test shown in the IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics Table, if applicable.
13. In accordance with UL 1577 , each optocoupler is proof tested by applying an insulation test voltage $\geq 6000 \mathrm{~V}$ rms for 1 second (leakage detection current limit, $I_{1-0} \leq 5 \mu \mathrm{~A}$). This test is performed before the 100% Production test shown in the IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics Table, if applicable.

NOTE: ALL RESISTORS ARE 1\% TOLERANCE

Figure 1. Gain and bandwidth test circuit

Figure 2. Base photo current test circuit

Figure 3. Base photo current frequency response test circuit

Figure 4. Recommended isolated video interface circuit

Figure 5. Input current vs. forward voltage

Figure 6. Base photo current vs. input current

Figure 7. Small-signal response vs. input current

Figure 8. Current transfer ratio vs. temperature

Figure 9. Current transfer ratio vs. input current

T_{A} - TEMPERATURE - ${ }^{\circ} \mathrm{C}$

Figure 10. Base photo current variation vs. bias conditions

Figure 11. Normalized voltage gain vs. frequency

Figure 12. Normalized base photo current vs. frequency

Figure 14. Isolation mode rejection ratio vs. frequency

Figure 15. DC output voltage vs. transistor current gain

Figure 16. Output buffer stage for low impedance loads

$h_{\text {FE }}$ - TRANSISTOR CURRENT GAIN

Figure 17. Thermal derating curve, dependence of safety limiting value with case temperature per IEC/ EN/DIN EN 60747-5-2

Conversion from HCPL-4562 to HCNW4562

In order to obtain similar circuit performance when converting from the HCPL-4562 to the HCNW4562, it is recommended to increase the Quiescent Input Current, I_{FQ}, from 6 mA to 10 mA . If the application circuit in Figure 4 is used, then potentiometer R4 should be adjusted appropriately.

Design Considerations of the Application Circuit

The appÏication circuit in Figure 4 incorporates several features that help maximize the bandwidth performance of the HCPL-4562/HCNW4562. Most important of these features is peaked response of the detector circuit that helps extend the frequency range over which the voltage gain is relatively constant. The number of gain stages, the overall circuit topology, and the choice of DC bias points are all consequences of the desire to maximize bandwidth performance.
To use the circuit, first select R_{1} to set V_{E} for the desired LED quiescent current by:

$$
\begin{equation*}
I_{F Q}=\frac{V_{E}}{R_{4}} \approx \frac{G_{V} V_{E} R_{10}}{\left(I_{P B} / I_{F}\right) R_{7} R_{9}} \tag{1}
\end{equation*}
$$

For a constant value $\mathrm{V}_{\text {INp-p, }}$ the circuit topology (adjusting the gain with R_{4}) preserves linearity by keeping the modulation factor (MF) dependent only on V_{E}.

$$
\begin{align*}
& i_{F_{p-p}} \approx V_{I N} / R_{4} \tag{2}\\
& \frac{i_{F p-p}}{I_{F Q}} \approx \frac{i_{P B, p-p}}{I_{P B Q}}=\frac{V_{I N p-p}}{V_{E}} \tag{3}
\end{align*}
$$

Modulation

Factor (MF): $\frac{i_{F(p-p)}}{2 I_{F Q}}=\frac{V_{I N_{p-p}}}{2 V_{E}}$
For a given $\mathrm{G}_{\mathrm{v}^{\prime}} \mathrm{V}_{\mathrm{E}^{\prime}}$, and V_{CC}, DC output voltage will vary only with $\mathrm{h}_{\text {FEX }}$.
$V_{O}=V_{C C}-V_{B E}-\frac{R_{9}}{R_{10}}\left[V_{B E X}-\left(I_{P B Q}-I_{B X Q}\right) R_{7}\right]$
Where:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{PBQ}} \approx \frac{\mathrm{G}_{\mathrm{V}} \mathrm{~V}_{\mathrm{E}} \mathrm{R}_{10}}{\mathrm{R}_{7} \mathrm{R}_{9}} \tag{6}
\end{equation*}
$$

and,

$$
\begin{equation*}
\mathrm{I}_{\mathrm{BXQ}} \approx \frac{\mathrm{~V}_{\mathrm{CC}}-2 \mathrm{~V}_{\mathrm{BE}}}{\mathrm{R}_{6} \mathrm{~h}_{\mathrm{FEX}}} \tag{7}
\end{equation*}
$$

Figure 15 shows the dependency of the DC output voltage on $\mathrm{h}_{\mathrm{FEx}}$.
For $9 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<12 \mathrm{~V}$, select the value of R_{11} such that

$$
\begin{equation*}
\mathrm{I}_{\mathrm{C}_{4}} \approx \frac{\mathrm{~V}_{\mathrm{O}}}{\mathrm{R}_{11}} \frac{4.25 \mathrm{~V}}{470} \quad 9.0 \mathrm{~mA} \tag{8}
\end{equation*}
$$

The voltage gain of the second stage $\left(Q_{3}\right)$ is approximately equal to:

$$
\begin{equation*}
\left.\frac{\mathrm{R}_{9}}{\mathrm{R}_{10}} * \frac{1}{1+\mathrm{s} \mathrm{R}_{9}\left[\mathrm{C}_{\mathrm{CQ}_{3}}+\frac{1}{2} \mathrm{R}_{11} \mathrm{f}_{\mathrm{T}_{4}}\right.}\right] \tag{9}
\end{equation*}
$$

Increasing $R^{\prime}{ }_{11}\left(R_{11}^{\prime}\right.$ includes the parallel combination of R_{11} and the load impedance) or reducing R_{9} (keeping R_{9} / R_{10} ratio constant) will improve the bandwidth.
If it is necessary to drive a low impedance load, bandwidth may also be preserved by adding an additional emitter following the buffer stage $\left(Q_{5}\right.$ in Figure 16), in which case R_{11} can be increased to set $\mathrm{I}_{\mathrm{CQ} 4} \cong 2 \mathrm{~mA}$.
Finally, adjust R_{4} to achieve the desired voltage gain.

$$
\begin{equation*}
G_{V} \approx \frac{V_{O U T}}{V_{I N}} \approx \frac{I_{P B}}{I_{F}}\left[\frac{R_{7} R_{9}}{R_{4} R_{10}}\right] \tag{10}
\end{equation*}
$$

where typically $\frac{I_{P B}}{I_{F}}=0.0032$
Definition:

$$
\begin{aligned}
\mathrm{G}_{\mathrm{V}}= & \text { Voltage Gain } \\
\mathrm{I}_{\mathrm{FQ}}= & \text { Quiescent LED forward current } \\
\mathrm{i}_{\mathrm{Fp-p}}= & \text { Peak-to-peak small signal LED forward } \\
& \text { current } \\
\mathrm{V}_{\mathrm{INp-p}}= & \text { Peak-to-peak small signal input voltage } \\
\mathrm{i}_{\mathrm{PBp-p}}= & \text { Peak-to-peak small signal } \\
& \text { base photo current } \\
\mathrm{I}_{\mathrm{PBQ}}= & \text { Quiescent base photo current } \\
\mathrm{V}_{\mathrm{BEX}}= & \text { Base-Emitter voltage of HCPL-4562/ } \\
& \text { HCNW4562 transistor }
\end{aligned}
$$

