

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

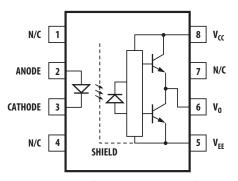
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HCPL-T251

0.4 Amp Output Current IGBT Gate Drive Optocoupler


Data Sheet

Description

The HCPL-T251 contains GaAsP LED. The LED is optically coupled to an integrated circuit with a power output stage. This optocoupler is ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications. The high operating voltage range of the output stage provides the drive voltages required by gate controlled devices. The voltage and current supplied by this optocoupler makes it ideally suited for directly driving small or medium power IGBTs.

Functional Diagram

A 0.1 μF bypass capacitor must be connected between pins 5 and 8.

Features

- Supply current (I_{CC}): 11 mA (max.)
- Supply voltage (V_{CC}): 10-30 V
- Output current (I_O): ±0.4 A (min.)
- Switching time (t_{PLH}/t_{PHL}): 1 μs (max.)
- Isolation voltage (V_{ISO}): 3750 Vrms (min.)
- UL 577 Recognized: File No. E55361
- CSA Approved
- 10 kV/μs Minimum Common Mode Rejection (CMR) at Vcm = 600 V
- Creepage distance: 7.4 mm
 Clearance: 7.1 mm

Applications

Truth Table

Vout

LOW

HIGH

LED

OFF

ON

- IGBT/MOSFET gate drive
- AC/brushless DC motor drives
- Industrial inverters
- Switch mode power supplies

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

HCPL-T251HCPL-T251 is UL Recognized with 3750 Vrms for 1 minute per UL1577.

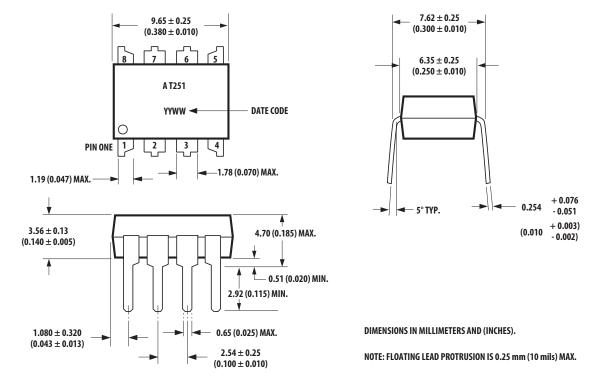
	Opt	ion					
Part Number	RoHS Compliant	Non RoHS Compliant	Package	Surface Mount	Gull Wing	Tape & Reel	Quantity
	-000E	No option	300mil				50 per tube
HCPL-T251	-300E	#300	DIP-8	X	Х		50 per tube
	-500E	#500		X	Х	Х	1000 per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

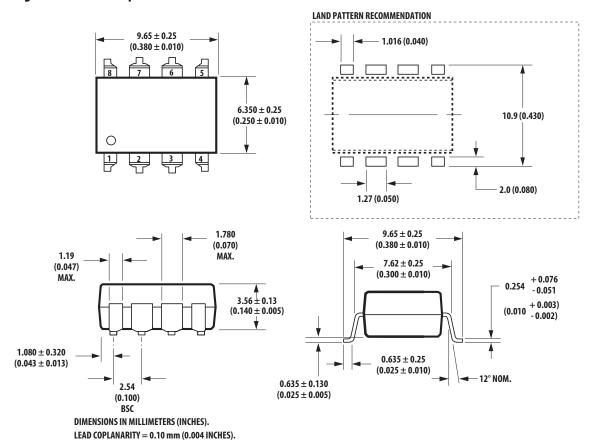
Example 1:

HCPL-T251-500E to order product of 300 mil DIP Gull Wing Surface Mount package in Tape and Reel and RoHS compliant.

Example 2:


HCPL-T251 to order product of 300 mil DIP package in tube packaging and non RoHS compliant.

Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.


Remarks: The notation '#XXX' is used for existing products, while (new) products launched since 15th July 2001 and RoHS compliant option will use '-XXXE'.

Package Outline Drawings

Standard DIP Package

Gull Wing Surface Mount Option 300

NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.

Regulatory Information

The HCPL-T251 is under approval by the following organizations:

UL

Approval under UL 1577, Component Recognition Program, File E55361.

CSA

Approval under CSA Component Acceptance Notice #5, File CA 88324.

Insulation and Safety Related

Parameter	Symbol	Value	Units	Conditions
Minimum External Air Gap (Clearance)	L(101)	7.1	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (Creepage)	L(102)	7.4	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)		0.08	mm	Insulation thickness between emitter and detector; also known as distance through insulation
Tracking Resistance (Comparative Tracking Index)	CTI	≥175	Volts	DIN IEC 112/VDE 0303 Part 1
Isolation Group		Illa		Material Group (DIN VDE 0110, 1/89, Table 1)

Absolute Maximum Ratings (Compared with HCPL-3140)

			HCPL-	-3140	HCPL	-T251	
Parameter	Symbol	Units	Min.	Max.	Min.	Max.	Note
Operating Temperature	T _A	°C	-40	100	-20	85	
"High" Peak Output Current	I _{OH(PEAK)}	Α		0.6		0.4	1
"High" Peak Output Current	I _{OL(PEAK)}	Α		0.6		0.4	
Storage Temperature	T _S	°C	-55	125	-55	125	
Average Input Current	I _{F(AVG)}	mA		25		20	2
Peak Transient Input Current (<1 µs Pulse Width, 300 pps)	I _{F(TRAN)}	А		1.0		1.0	
Reverse Input Voltage	V_R	V		5		5	
Supply Voltage	(V _{CC} - V _{EE})	V	-0.5	35	-0.5	35	
Output Voltage	V _O	V	0	V _{CC}	0	V _{CC}	
Output Power Dissipation	PO	mW		250		250	3
Lead Solder Temperature	260	°C for 10 se	ec., 1.6 mm	below seati	ng plane		
Solder Reflow Temperature Profile	9	See Package	Outline Draw	rings section	l		

Notes:

- 1. Maximum pulse width = $10 \mu s$, maximum duty cycle = 0.2%.
- 2. Derate linearly above 70°C free-air temperature at a rate of 0.3 mA/°C.
- 3. Derate lineraly above 70°C free-air temperature at a rate of 4.8 mW/°C.

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Power Supply Voltage	V _{CC} - V _{EE}	15	30	V
Input Current (ON)	I _{F(ON)}	8	12	mA
Input Voltage (OFF)	V _{F(OFF)}	0	0.8	V

DC Electrical Specifications (Compared with HCPL-3140)

Over recommended operating conditions ($I_{F(ON)} = 8$ to 12 mA, $V_{F(OFF)} = 0$ to 0.8 V, $V_{CC} = 15$ to 30 V, $V_{EE} = Ground$) unless otherwise specified.

				HCPL-3140			HCPL-T251		Test	
Parameter	Symbol	Units	Min.	Typ.*	Max.	Min.	Typ.*	Max.	Conditions	Note
Input Forward Voltage	V _F	V	1.2	1.5	1.8		1.6	1.8	I _F = 10 mA	
Temperature Coefficient of Forward Voltage	$\Delta V_F/\Delta T_A$	mV/°C		-1.6			-2.0		I _F = 10 mA	
Input Reverse Current	I _R	μΑ			10			10	$V_R = 5 V$	
Input Capacitance	C _{IN}	pF		60			45	250	$V_F = 0 V$, F = 1 MHz	
High Level Output Current	I _{OH}	А	0.2 0.4	0.5		N.A.	0.25		$V_O = V_{CC} - 4V$ $V_O = V_{CC} - 15V$	
Low Level Output Current	l _{OL}	А	0.2 0.4	0.4 0.5		0.1 N.A.	0.2		$V_O = V_{CC} - 4 V$ $V_O = V_{CC} - 15 V$	
High Level Output Voltage	V _{OH}	V	V _{CC} - 4	V _{CC} - 1.8		V _{CC} - 4	V _{CC} - 1.8		I _O = -100 mA	
Low Level Output Voltage	V _{OL}	V		0.4	1		0.5		I _O = 100 mA	
High Level Supply Current	I _{CCH}	mA		0.7	3		7.5	11	Output Open $I_F = 7$ to 16 mA	
Low Level Supply Current	I _{CCL}	mA		1 - 2	3		8	11	Output Open $V_F = -3.0 \text{ to}$ $+0.8 \text{ V}$	
Threshold Input Current Low to High	I _{FLH}	mA			6			7	$I_{O} = 0 \text{ mA},$ $V_{O} > 5 \text{ V}$	
Threshold Input Voltage High to Low	V_{FHL}	V	0.8			0.8			_	
Supply Voltage	V _{CC}	V	10		30	10		30		
Capacitance (Input-Output)	C _{I-0}	pF		60			60			
Resistance (Input-Output)	R _{I-0}	Ω		10 ¹²			10 ¹²			

^{*}All typical values at $T_A=25^{\circ}C$ and V_{CC} - $V_{EE}=3^{\circ}\,V,$ unless otherwise noted.

Switching Specifications (AC) (Compared with HCPL-3140)

Over recommended operating conditions ($T_A = -40$ to 100° C, $I_{F(ON)} = 8$ to 12 mA, $V_{F(OFF)} = -3.0$ to 0.8 V, $V_{CC} = 15$ to 30 V, $V_{EE} = Ground$) unless otherwise specified.

			HCPL-3140 (-40°C ~ 100°C)		HCPL-T251 (-20°C ~ 70°C)			Test				
Parameter	Symbol	Units	Min.	Тур.*	Max.	. Min.	in. Typ.*	Max.	Conditio	Note		
Propagation Delay Time to High Output Level	t _{PHL}	μs	0.1	0.2	0.7		0.25	1	Rg = 47 Ω Cg = 3 nF, f = 10 kHz, Duty Cycle = 50%			
Propagation Delay Time to Low Output Level	T _{PLH}	μs	0.1	0.3	0.7		0.25	1				
Output Rise Time	t _R	ns		50		N.A.						
Output Fall Time	t _F	ns		50		N.A.						
Propagation Delay Difference Between Any Two Parts	(t _{PHL} - t _{PLH}) PDD	μs	-0.5		0.5	N.A.		N.A.	_		1	
Output High	CM _H	kV/μs	10			10			$T_A = 25^\circ$	°C, V _{CC} = 30 V	2	
Level Common Mode Transient									HCPL -3140	$I_F = 10 \text{ mA}$ $V_{CM} = 1000 \text{ V}$		
Immunity									HCPL -T251	$I_F = 8 \text{ mA}$ $V_{CM} = 600 \text{ V}$		
Output Low	$ CM_L $	kV/μs	10			10			$T_A = 25^{\circ}$	$T_A = 25^{\circ}C, V_F = 0 V$		
Level Common Mode Transient Immunity					HCPL -3140	$V_{CM} = 1000 V$						
minumity									HCPL -T251	V _{CM} = 600 V		

^{*}All typical values at $T_A = 25^{\circ} C$ and V_{CC} - $V_{EE} = 30$ V, unless otherwise noted. **Notes:**

^{1.} The difference between t_{PHL} and t_{PLH} between any two HCPL-3140 parts under the same test condition.

^{2.} Common mode transient immunity in the high state is the maximum tolerable dV_{CM}/dt of the common mode pulse, V_{CM} , to assure that the output will remain in the high state (i.e., $V_O > 15.0 \text{ V}$).

^{3.} Common mode transient immunity in a low state is the maximum tolerable dV_{CM}/dt of the common mode pulse, V_{CM} , to assure that the output will remain in a low state (i.e., $V_O < 1.0 \, V$).