

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

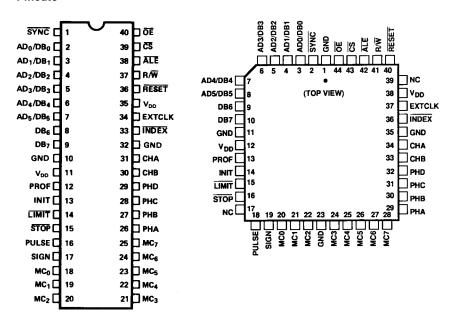
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HCTL-1100 Series

General Purpose Motion Control ICs

Data Sheet

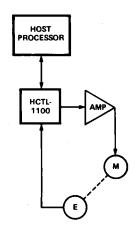

Description

The HCTL-1100 series is a high performance, general purpose motion control IC, fabricated in Avago CMOS technology. It frees the host processor for other tasks by performing all the time-intensive functions of digital motion control. The programmability of all control parameters provides maximum flexibility and quick design of control systems with a minimum number of components. In addition to the HCTL-1100, the complete control system consists of a host processor to specify commands, an amplifier, and a motor with an incremental encoder (such as the HP HEDS-5XXX, -6XXX, -9XXX series). No analog compensation or velocity feedback is necessary.

Features

- · Low power CM OS
- PDIP and PLCC versions available
- Enhanced version of the HCTL-1000
- DC, DC brushless, and step motor control
- · Position and velocity control
- · Programmable digital filter and commutator
- · 8-Bit parallel, and PWM motor command ports
- TTL compatible
- SYNC pin for coordinating multiple HCTL-1100 ICs
- 100 kHz to 2 M Hz operation
- · Encoder input port

Pinouts

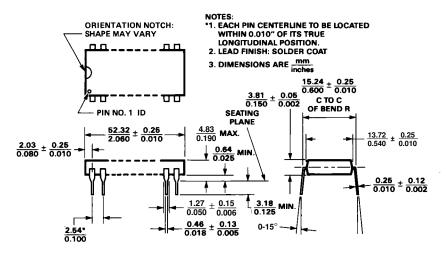

Applications

Typical applications for the HCTL-1100 include printers, medical instruments, material handling machines, and industrial automation.

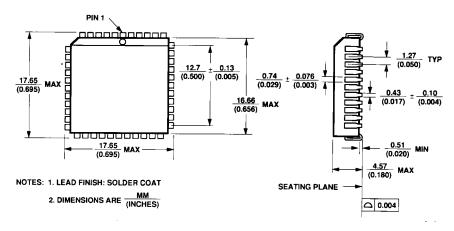
Note: Avago Technologies encoders are not recommended for use in safety critical applications. Eg. ABS braking systems, power steering, life support systems and critical care medical equipment. Please contact sales representative if more clarification is needed.

HCTL-1100 vs. HCTL-1000

The HCTL-1100 is designed to replace the HCTL-1000. Some differences exist, and some enhancements have been added.



System Block Diagram


Comparison of HCTL-1100 and HCTL-1000

Description	HCTL-1100	HCTL-1000
Max. Supply Current	30 mA	180 mA
Max. Power Dissipation	165 mW	950 mW
Max. Tri-State Output Leakage Current	150 nA	10 μΑ
Operating Frequency	100 kHz-2 MHz	1 MHz-2 MHz
Operating Temperature Range	-20°C to +85°C	0°C to 70°C
Storage Temperature Range	-55°C to + 125°C	-40°C to +125°C
Synchronize 2 or More ICs	Yes	_
Preset Actual Position Registers	Yes	_
Read Flag Register	Yes	_
Limit and Stop Pins	$\begin{array}{c} \text{Must be pulled} \\ \text{up to } V_{\text{DD}} \text{ if} \\ \text{not used.} \end{array}$	Can be left floating if not used.
Hard Reset	Required	Recommended
PLCC Package Available	Yes	_

Package Dimensions

40-PIN PLASTIC DUAL INLINE PACKAGE

44 PIN PLASTIC LEADED CHIP CARRIER PACKAGE

Theory of Operation

The HCTL-1100 is a general purpose motor controller which provides position and velocity control for DC, DC brushless and stepper motors. The internal block diagram of the HCTL-1100 is shown in Figure 1. The HCTL-1100 receives its input commands from a host processor and position feedback from an incremental encoder with quadrature output. An 8-bit bi-directional multiplexed address/data bus interfaces the HCTL-1100 to the host processor. The encoder

feedback is decoded into quadrature counts and a 24-bit counter keeps track of position. The HCTL-1100 executes any one of four control algorithms selected by the user. The four control modes are:

- Position Control
- Proportional Velocity Control
- Trapezoidal Profile Control for point to point moves
- Integral Velocity Control with continuous velocity profiling using linear acceleration

The resident Position Profile Generator calculates the necessary profiles for Trapezoidal Profile Control and Integral Velocity Control. The HCTL-1100 compares the desired position (or velocity) to the actual position (or velocity) to compute compensated motor commands using a programmable digital filter D(z). The motor command is externally available at the Motor Command port as an 8-bit byte and at the PWM port as a Pulse Width Modulated (PWM) signal.

The HCTL-1100 has the capability of providing electronic commutation for DC brushless and stepper motors. Using the encoder position information, the motor phases are enabled in the correct sequence. The commutator is fully programmable to encompass most motor/encoder combinations. In addition, phase overlap and phase advance can be programmed to improve torque ripple and high speed performance. The HCTL-1100 contains a number of flags including two externally available flags, Profile and Initialization, which allow the user to see or check the status of the controller. It also has two emergency inputs, Limit and Stop, which allow operation of the HCTL-1100 to be interrupted under emergency conditions.

The HCTL-1100 controller is a digitally sampled data system. While information from the host processor is accepted asynchronously with respect to the control functions, the motor command is computed on a discrete sample time basis. The sample timer is programmable.

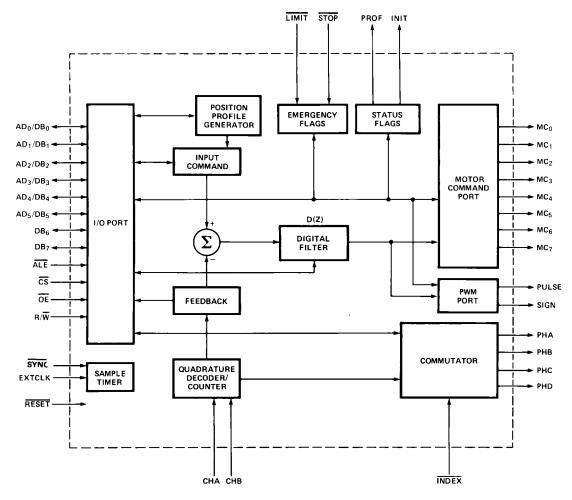


Figure 1. Internal Block Diagram.

Figure 2. Operating Mode Flowchart.

Electrical Specifications

Absolute Maximum Ratings

Operating Temperature, T _A	20°C to 85°C
Storage Temperature, T _S	55°C to 125°C
Supply Voltage, V _{DD}	0.3 V to 7 V
Input Voltage, V _{IN}	0.3 V to V_{DD} + 0.3 V
Maximum Operating Clock Frequency, f _{CLK}	2 MHz

DC Electrical Characteristics

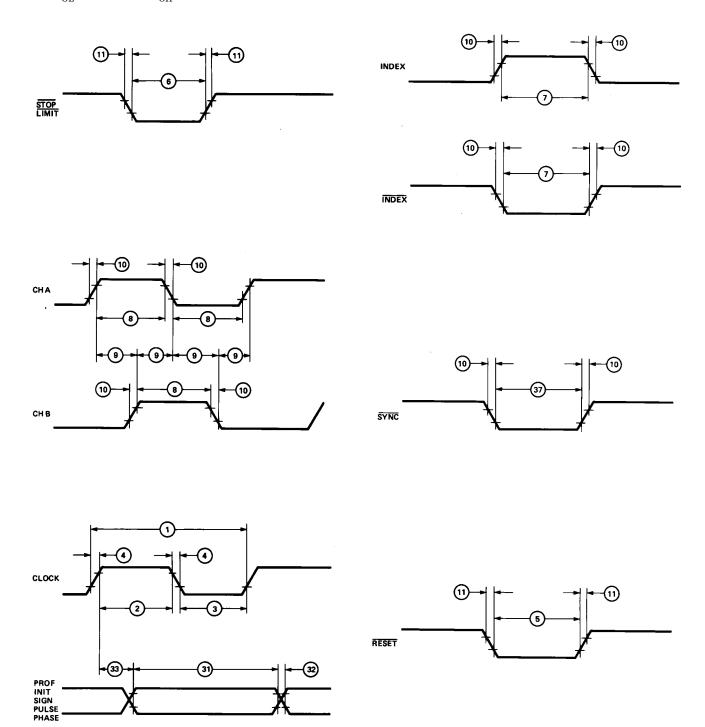
 V_{DD} = 5 V ± 5%; T_A = -20°C to + 85°C

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Supply Voltage	$V_{ m DD}$	4.75	5.00	5.25	V	
Supply Current	I_{DD}		15	30	mA	
Input Leakage Current	I _{IN}		10	100	nA	V _{IN} = 0.00 and 5.25 V
Input Pull-Up Current						
SYNC PIN	I_{PU}		- 40	± 150	μΑ	$V_{IN} = 0.00 \text{ V}$
Tristate Output Leakage Current	I_{OZ}		10	-150	nA	Sync, LIMIT, STOP pin # 35 (PDIP) V _{OUT} = -0.3 to 5.25 V pin # 38 (PLCC)
Input Low Voltage	V _{IL}	-0.3		0.8	V	
Input High Voltage	V _{IH}	2.0		$V_{ m DD}$	V	
Output Low Voltage	V _{OL}	-0.3		0.4	V	I_{OL} = 2.2 mA
Output High Voltage	V _{OH}	2.4		$V_{ m DD}$	V	$I_{OH} = -200 \ \mu A$
Power Dissipation	P _D		75	165	mW	
Input Capacitance	C _{IN}			20	pF	
Output Capacitance	C _{OUT}		100		pF	

AC Electrical Characteristics

 $V_{DD} = 5~V \pm ~5\%; T_A = ~-20 ^{\circ} C ~to ~+ 85 ^{\circ} C; Units = ~nsec$

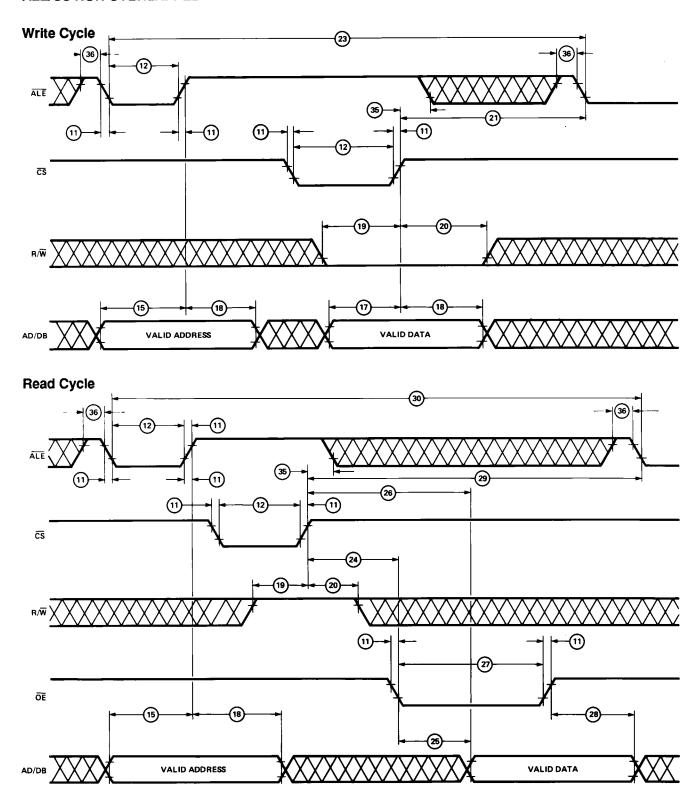
			C	lock Fr	requenc	y	E	1*
ID			2 N	ИHz	1 M	IHz	Fori	nula*
ID #	Signal	Symbol	Min.	Max.	Min.	Max.	Min.	Max.
1	Clock Period (clk)	t_{CPER}	500		1000			
2	Pulse Width, Clock High	t_{CPWH}	230		300			
3	Pulse Width, Clock Low	${ m t_{CPWL}}$	200		200		200	
4	Clock Rise and Fall Time	${ m t_{CR}}$		50		50		50
5	$\overline{\text{Input Pulse Width }}\overline{\text{Reset}}$	t_{IRST}	2500		5000		5 clk	
6	Input Pulse Width Stop, Limit	$ m t_{IP}$	600		1100		1 clk + 100 ns	
7	Input Pulse Width Index, Index	t _{IX}	1600		3100		3 clk + 100 ns	
8	Input Pulse Width CHA, CHB	${ m t_{IAB}}$	1600		3100		3 clk + 100 ns	
9	Delay CHA to CHB Transition	t_{AB}	600		1100		1 clk + 100 ns	
10	Input Rise/Fall Time CHA, CHB, Index	$t_{ m IABR}$		450		900		900 (clk < 1 MHz)
11	Input Rise/Fall Time Reset, ALE, CS, OE, Stop, Limit	$t_{ m IR}$		50		50		50
12	Input Pulse Width $\overline{\text{ALE}}, \overline{\text{CS}}$	$ m t_{IPW}$	80		80		80	
13	Delay Time, ALE Fall to CS Fall	${ m t_{AC}}$	50		50		50	
14	Delay Time, ALE Rise to CS Rise	${ m t_{CA}}$	50		50		50	
15	Address Setup Time Before ALE Fall	$ m t_{ASR1}$	20		20		20	
16	Address Setup Time Before CS Fall	${ m t_{ASR}}$	20		20		20	
17	Write Data Setup Time Before CS Rise	${ m t_{DSR}}$	20		20		20	
18	Address/Data Hold Time	t_{H}	20		20		20	
19	Setup Time, R/W Before CS Rise	$t_{ m WCS}$	20		20		20	
20	Hold Time, R/W After CS Rise	$t_{ m WH}$	20		20		20	
21	Delay Time, Write Cycle, CS Rise to ALE Fall	${ m t_{CSAL}}$	1700		3400		3.4 clk	
22	Delay Time, Read/Write, CS Rise to CS Fall	$t_{ m CSCS}$	1500		3000		3 clk	
23	Write Cycle, ALE Fall to ALE Fall For Next Write	$t_{ m WC}$	1830		3530		3.7 clk	


AC Electrical Characteristics (continued).

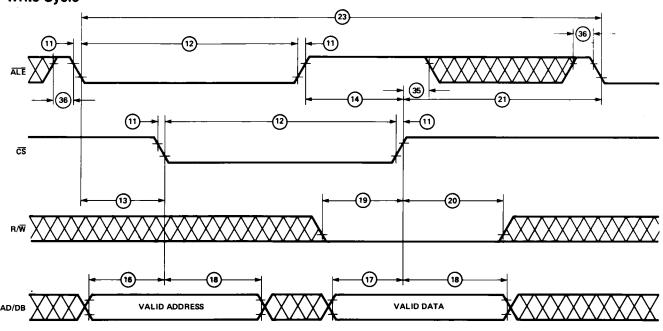
			Clock Frequency				- Formula*	
ID			2 MHz		1 M	IHz	Formula	
#	Signal	Symbol	Symbol Min. Max		Min.	Max.	Min.	Max.
24	Delay Time, $\overline{\text{CS}}$ Rise to $\overline{\text{OE}}$ Fall	t_{CSOE}	1700		3200		3 clk + 200 ns	
25	Delay Time, OE Fall to Data Bus Valid	$ m t_{OEDB}$	100		100		100	
26	Delay Time, $\overline{\text{CS}}$ Rise to Data Bus Valid	t_{CSDB}	1800		3300		3 clk + 300 ns	
27	Input Pulse Width OE	$t_{ m IPWOE}$	100		100		100	
28	Hold Time, Data Held After OE Rise	$ m t_{DOEH}$	20		20		20	
29	Delay Time, Read Cycle, CS Rise to ALE Fall	$ m t_{CSALR}$	1820		3320		3 clk + 320 ns	
30	Read Cycle, ALE Fall to ALE Fall For Next Read	${ m t_{RC}}$	1950		3450		3 clk + 450 ns	
31	Output Pulse Width, PROF, INIT, Pulse, Sign, PHA-PHD, MC Port	$t_{ m OF}$	500		1000		1 clk	
32	Output Rise/Fall Time, PROF, INIT, Pulse, Sign, PHA-PHD, MC Port	$\mathrm{t_{OR}}$	20	150	20	150	20	150
33	Delay Time, Clock Rise to Output Rise	$ m t_{EP}$	20	300	20	300	20	300
34	Delay Time, CS Rising to MC Port Valid	${ m t_{CSMC}}$		1600		3200		3.2 clk
35	Hold Time, ALE High After CS Rise	${ m t_{ALH}}$	100		100		100	
36	Pulse Width, ALE High	${ m t_{ALPWH}}$	100		100		100	
37	Pulse Width, SYNC Low	$t_{ m SYNC}$	9000		18000		18 clk	

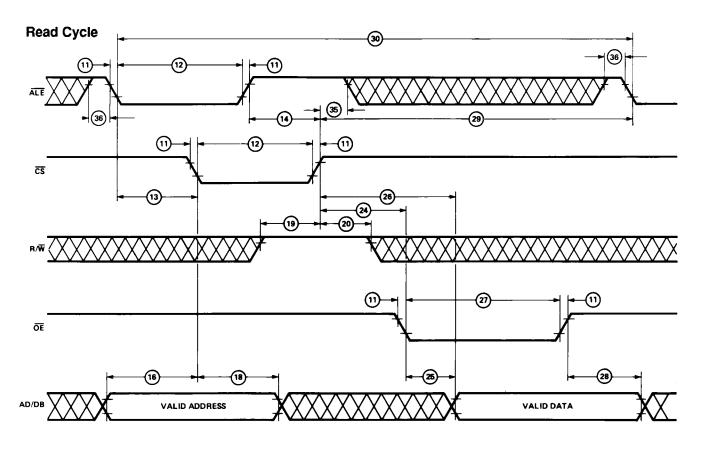
^{*}General formula for determining AC characteristics for other clock frequencies (clk), between 100 kHz and 2 MHz.

HCTL-1100 I/ O Timing Diagrams


Input logic level values are the TTL Logic levels V_{IL} = 0.8 V and V_{IH} = 2.0 V. Output logic levels are V_{OL} = 0.4 V and V_{OH} = 2.4 V.

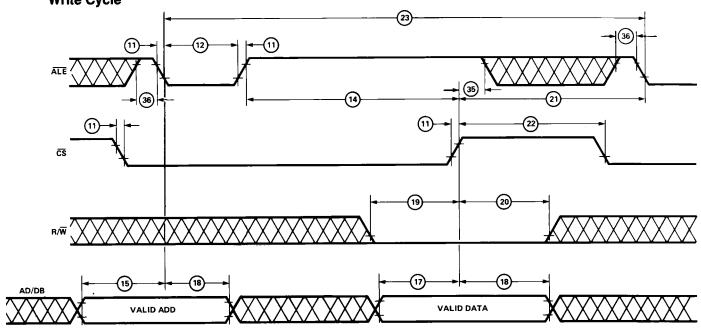
HCTL-1100 I/ O Timing Diagrams

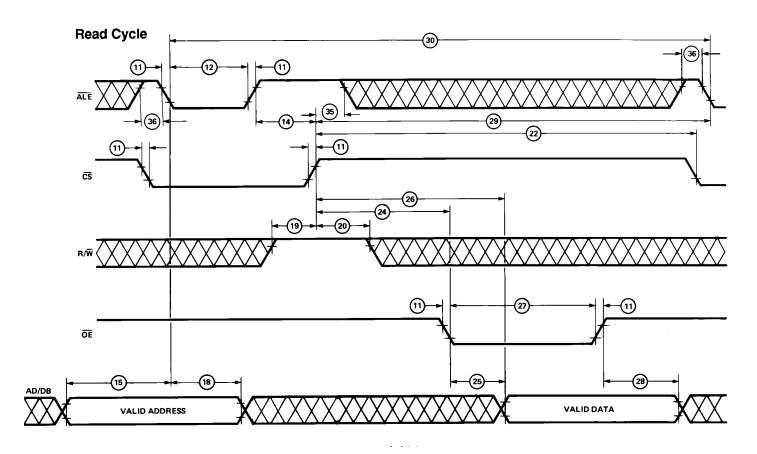

There are three different timing configurations which can be used to give the user flexibility to interface the HCTL-1100 to most microprocessors. See the I/O interface section for more details.


ALE/CS NON OVERLAPPED

ALE/CS OVERLAPPED

Write Cycle





HCTL-1100 I/ O Timing Diagrams

ALE WITHIN CS

Write Cycle

Pin Descriptions and Functions Input/ Output Pins

	Pin N	umber	
Symbol	PDIP	PLCC	Description
AD0/DB0- AD5/DB5	2-7	3-8	Address/Data Bus – Lower 6 bits of 8-bit I/O port which are multiplexed between address and data.
DB6, DB7	8, 9	9, 10	Data bus – Upper 2 bits of 8-bit I/O port used for data only.

Input Signals

Pin Number		umber		
Symbol	PDIP	PLCC	Description	
CHA/CHB	31, 30	34, 33	Channel A, B – Input pins for position feedback from an incremental shaft encoder. Two channels, A and B, 90 degrees out of phase are required.	
Index	33	36	Index Pulse – Input from the reference or index pulse of an incremental encoder. <u>Used only in conjunction with the Commutator</u> . Either a low or high true signal can be used with the Index pin. See Timing Diagrams and Encoder Interface section for more detail.	
R/W	37	41	Read/Write – Determines direction of data exchange for the I/O port.	
ALE	38	42	Address Latch Enable – Enables lower 6 bits of external data bus into internal address latch.	
CS	39	43	Chip Select – Performs I/O operation dependent on status of R/W line. For a Write, the external bus data is written into the internal addressed location. For Read, data is read from an internal location into an internal output latch.	
OE	40	44	Output Enable – Enables the data in the internal output latch onto the external data bus to complete a Read operation.	
Limit	14	15	Limit Switch – An internal flag which when externally set, triggers an unconditional branch to the Initialization/Idle mode before the next control sample is executed. Motor Command is set to zero. Status of the Limit flag is monitored in the Status register.	
Stop	15	16	Stop Flag – An internal flag that is externally set. When flag is set during Integral Velocity Control mode, the Motor Command is decelerated to a stop.	
Reset	36	40	Reset – A hard reset of internal circuitry and a branch to Reset mode.	
ExtClk	34	37	External Clock	
V_{DD}	11, 35	12, 38	$\label{eq:Voltage} Voltage \ Supply - Both \ V_{DD} \ pins \ must \ be \ connected \ to \ a \ 5.0 \ volt \ supply.$	
GND	10, 32	1, 11, 23, 35	Circuit Ground	
SYNC	1	2	Used to synchronize multiple HCTL-1100 sample timers.	
NC	_	17, 39	Not connected. These pins should be left floating.	

Output Pins

	Pin Number		
Symbol	PDIP	PLCC	Description
MC0-MC7	18-25	20-22, 24-28	Motor Command Port – 8-bit output port which contains the digital motor command adjusted for easy bipolar DAC interfacing. MC7 is the most significant bit (MSB).
Pulse	16	18	Pulse – Pulse width modulated signal whose duty cycle is proportional to the Motor Command magnitude. The frequency of the signal is External Clock/100 and pulse width is resolved into 100 external clocks.
Sign	17	19	Sign – Gives the sign/direction of the pulse signal.
PHA-PHD	26-29	29-32	Phase A, B, C, D – Phase Enable outputs of the Commutator.
Prof	12	13	Profile Flag – Status flag which indicates that the controller is executing a profiled position move in the Trapezoidal Profile Control mode.
Init	13	14	Initialization/Idle Flag – Status flag which indicates that the controller is in the Initialization/Idle mode.

Pin Functionality

SYNC Pin

The SYNC pin is used to synchronize two or more ICs. It is only valid in the INIT/IDLE mode (see Operating the HCTL-1100). When this pin is pulled low, the internal sample timer is cleared and held to zero. When the level on the pin is returned to high, the internal sample timer instantly starts counting down from the programmed value.

Connecting all SYNC pins together in the system and pulsing the SYNC signal from the host processor will synchronize all controllers.

Limit Pin

This emergency-flag input is used to disable the control modes of the HCTL-1100. A low level on this input pin causes the internal Limit flag to be set. If this pin is NOT used, it must be pulled up to V_{DD} . If it is not connected, the pin could float low, and possibly trigger a false emergency condition.

The Limit flag, when set in any control mode, causes the HCTL-1100 to go into the Initialization/ Idle mode, clearing the Motor Command and causing an immediate motor shutdown. When the Limit flag is set, none of the three control mode flags (F0, F3, or F5) are cleared as the HCTL-1100 enters the Initialization/Idle mode. The user should be aware that these flags are still set before commanding the HCTL-1100 to re-enter one of the four control modes from Initialization/Idle mode.

In general, the user should clear all control mode flags after the limit pin has been pulled low, then proceed.

Stop Pin

The Stop flag affects the HCTL-1100 only in the Integral Velocity Mode.

When a low level is present on this emergency-flag input, the internal stop flag is set. If this pin is NOT used, it must be pulled up to $V_{\rm DD}$. If it is not connected, the pin could float low, and possibly trigger a false emergency condition.

When the STOP flag is set, the system will come to a decelerated stop and stay in this mode with a command velocity of zero until the Stop flag is cleared and a new command velocity is specified.

Notes on Limit and Stop Flags

Stop and Limit flags are set by a low level input at their respective pins. The flags can only be cleared when the input to the corresponding pin goes high, signifying that the emergency condition has been corrected, AND a write to the Status register (R07H) is executed. That is, after the emergency pin has been set and cleared, the flag also must be cleared by writing to R07H. Any word that is written to R07H after the emergency pin is set and cleared will clear the emergency flag. The lower four bits of that word will also reconfigure the Status register.

Encoder Input Pins (CHA, CHB, INDEX)

The HCTL-1100 accepts TTL compatible outputs from 2 and 3 channel incremental encoders such as the HEDS-5XXX, 6XXX, and 9XXX series encoders. Channels A and B are internally decoded into quadrature counts which increment or decrement the 24-bit position counter. For example, a 500-count encoder is decoded into 2000 quadrature counts per revolution. The position counter will be incremented when Channel B leads Channel A. The Index channel is used only for the Commutator and its function is to serve as a reference point for the internal Ring Counter.

The HCTL-1100 employs an internal 3-bit state delay filter to remove any noise spikes from the encoder inputs to the HCTL-1100. This 3-bit state delay filter requires the encoder inputs to remain stable for three consecutive clock rising edges for an encoder pulse to be considered valid by the HCTL-1100's actual position counter (i.e., an encoder pulse must remain at a logic level high or low for three consecutive clock rising edges for the HCTL-1100's actual position counter to be incremented or decremented.) The designer should therefore generally avoid creating the encoder pulses of less than 3 clock cycles.

The index signal of an encoder is used in conjunction with the Commutator. It resets the internal ring counter which keeps track of the rotor position so that no cumulative errors are generated.

The Index pin of the HCTL-1100 also has a 3-bit filter on its input. The Index pin is active low and level transition sensitive. It detects a valid high-to-low transition and qualifies the low input level through the 3-bit filter. At this point, the Index signal is internally detected by the commutator logic. This type of configuration allows an Index or Index signal to be used to generate the reference mark for commutator operation as long as the AC specifications for the Index signal are met.

M otor Command Port (M C0-M C7)

The 8-bit Motor Command port consists of register R08H whose data goes directly to external pins MC0-MC7. MC7 is the most significant bit. R08H can be read and written to, however, it should be written to only during the Initialization/Idle mode. During any of the four Control modes, the controller writes the motor command into R08H.

This topic is further discussed in the "Register Section" under "Motor Command Register R08H".

Pulse Width Modulation (PWM) Output Port (Pulse, Sign)

The PWM port consists of the Pulse and Sign pins. The PWM port outputs the motor command as a pulse width modulated signal with the correct polarity. This topic is further discussed in the "Register Section" under "PWM Motor Command Register R09H".

Trapezoid Profile Pin (Prof)

The Trapezoid Profile Pin is

internally connected to software flag bit 4 in the Status Register. This flag is also represented by bit 0 in the Flag Register (R00H). See the "Register Section" for more information. Both the Pin and the Flag indicate the status of a trapezoid profile move. When the HCTL-1100 begins a trapezoid move, this flag is set by the controller (a high level appears on the pin), indicating the move is in progress. When the HCTL-1100 finishes the move, this flag is cleared by the controller.

Note that the instant the flag is cleared may not be the same instant the motor stops. The flag indicates the completion of the command profile, not the actual profile. If the motor is stalled during the move, or cannot physically keep up with the move, the flag will be cleared before the move is finished.

INIT/ IDLE Pin (INIT)

This pin indicates that the HCTL-1100 is in the INIT/IDLE mode, waiting to begin control. This pin is internally connected to the software flag bit 5 in the Status Register R07H. This flag is also represented by bit 1 in the Flag Register (R00H) (See the "Register Section" for more information).

Commutator Pins (PHA-PHD)

These pins are connected only when using the commutator of the HCTL-1100 to drive a brushless motor or step motor. The four pins can be programmed to energize each winding on a multiphase motor.

Operation of the HCTL-1100

Registers

The HCTL-1100 operation is controlled by a bank of 64 8-bit registers, 35 of which are user accessible. These registers contain command and configuration information necessary to properly run the controller chip. The 35 user-accessible registers are listed in Tables 1 and 2. The register number is also the address. A functional block diagram of the HCTL-1100 which shows the role of the useraccessible registers is also included in Figure 3. The other 29 registers are used by the internal CPU as scratch registers and should not be accessed by the user.

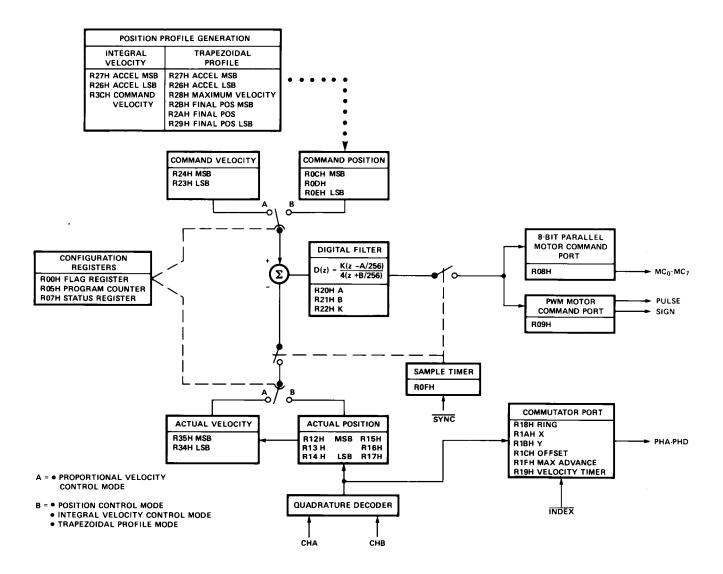


Figure 3. Register Block Diagram.

Table 1. Register Reference By Mode

Register				User
Hex	Dec.	Function	Data Type ^[1]	Access
General	Control			
R00H	R00D	Flag Register		r/w
R05H	R05D	Program Counter	scalar	r/w
R07H	R07D	Status Register	-	$r/w^{[2]}$
R0FH	R15D	Sample Timer	scalar	r/w
R12H	R18D	Read Actual Position MSB	2's Complement	$\mathbf{r}^{[4]}$
R13H	R19D	Read Actual Position	2's Complement	$r^{[4]}/w^{[5]}$
R14H	R20D	Read Actual Position LSB	2's Complement	$\mathbf{r}^{[4]}$
R15H	R21D	Preset Actual Position MSB	2's Complement	$w^{[8]}$
R16H	R22D	Preset Actual Position	2's Complement	$w^{[8]}$
R17H	R23D	Preset Actual Position LSB	2's Complement	$\mathbf{w}^{[8]}$
Output 1	Registers			
R07H	R07D	Sign Reversal Inhibit	-	$r/w^{[2]}$
R08H	R08D	8 bit Motor Command	2's Complement+ 80H	r/w
R09H	R09D	PWM Motor Command	2's Complement	r/w
Filter Re	egisters			
R20H	R32D	Filter Zero, A	scalar	r/w
R21H	R33D	Filter Pole, B	scalar	r/w
R22H	R34D	Gain, K	scalar	r/w
Commut	tator Regist			
R07H	R07D	Status Register	-	$r/w^{[2]}$
R18H	R24D	Commutator Ring	${ m scalar}^{[6,7]}$	r/w
R19H	R25D	Velocity Timer	scalar	w
R1AH	R26D	X	$\mathrm{scalar}^{[6,7]}$	r/w
R1BH	R27D	Y Phase Overlap	$\mathbf{scalar}^{[6,7]}$	r/w
R1CH	R28D	Offset	2's Complement ^[7]	r/w
R1FH	R31D	Max. Phase Advance	${ m scalar}^{[6,7]}$	r/w
	Control M			
R00H	R00D	Flag Register	-	r/w
R12H	R18D	Read Actual Position MSB	2's Complement	$\mathbf{r}^{[4]}$
R13H	R19D	Read Actual Position	2's Complement	$ {r}^{[4]}/ {w}^{[5]}$
R14H	R20D	Read Actual Position LSB	2's Complement	$\mathbf{r}^{[4]}$
R0CH	R12D	Command Position MSB	2's Complement	r/w ^[3]
R0DH	R13D	Command Position	2's Complement	r/w ^[3]
R0EH	R14D	Command Position LSB	2's Complement	r/w ^[3]

Table 1. (continued).

Register				TT
Hex	Dec.	Function	Data Type	User Access
Trapezo	id Profile (Control Mode		
R00H	R00D	Flag Register	-	r/w
R07H	R07D	Status Register	-	$r/w^{[2]}$
R12H	R18D	Read Actual Position MSB	2's Complement	$\mathbf{r}^{[4]}$
R13H	R19D	Read Actual Position	2's Complement	$r^{[4]}/w^{[5]}$
R14H	R20D	Read Actual Position LSB	2's Complement	$\mathbf{r}^{[4]}$
R29H	R41D	Final Position LSB	2's Complement	r/w
R2AH	R42D	Final Position	2's Complement	r/w
R2BH	R43D	Final Position MSB	2's Complement	r/w
R26H	R38D	Acceleration LSB	scalar	r/w
R27H	R39D	Acceleration MSB	${ m scalar}^{\scriptscriptstyle [6]}$	r/w
R28H	R40D	Maximum Velocity	${ m scalar}^{[6]}$	r/w
Integral	Velocity M	ode		
R00H	R00D	Flag Register	-	r/w
R12H	R18D	Read Actual Position MSB	2's Complement	$\mathbf{r}^{[4]}$
R13H	R19D	Read Actual Position	2's Complement	$r^{[4]}/w^{[5]}$
R14H	R20D	Read Actual Position LSB	2's Complement	$\mathbf{r}^{[4]}$
R26H	R38D	Acceleration LSB	scalar	r/w
R27H	R39D	Acceleration MSB	${ m scalar}^{\scriptscriptstyle [6]}$	r/w
R3CH	R60D	Command Velocity	2's Complement	r/w
Proporti	ional Veloc	ity Mode		
R00H	R00D	Flag Register	-	r/w
R12H	R18D	Read Actual Position MSB	2's Complement	$\mathbf{r}^{[4]}$
R13H	R19D	Read Actual Position	2's Complement	$r^{[4]}/w^{[5]}$
R14H	R20D	Read Actual Position LSB	2's Complement	$\mathbf{r}^{[4]}$
R23H	R35D	Command Velocity LSB	2's Complement	r/w
R24H	R36D	Command Velocity MSB	2's Complement	r/w
R34H	R52D	Actual Velocity LSB	2's Complement	r
R35H	R53D	Actual Velocity MSB	2's Complement	r

Notes:

- 1. Consult appropriate section for data format and use.

- Upper 4 bits are read only.
 Writing to R0EH (LSB) latches all 24 bits.
 Reading R14H (LSB) latches data in R12H and R13H.

- Writing to R13H clears Actual Position Counter to zero.
 The scalar data is limited to positive numbers (00H to 7FH).
 The commutator registers (R18H, R1CH, R1FH) have further limits which are discussed in the Commutator section of this data sheet.
 Writing to R17H (R23D) latches all 24 bits (only in INIT/IDLE mode).

Table 2. Register Reference Table by Register Number

Register					
Hex	Dec.	Function	Mode Used	Data Type	User Access
R00H	R00D	Flag Register	All	_	r/w
R05H	R05D	Program Counter	All	scalar	w
R07H	R07D	Status Register	All	_	r/w ^[2]
R08H	R08D	8 bit Motor Command Port	All	2's complement	
				+ 80H	r/w
R09H	R09D	PWM Motor Command Port	All	2's complement	r/w
R0CH	R12D	Command Position (MSB)	All except Proportional Velocity	2's complement	r/w ^[3]
R0DH	R13D	Command Position	All except Proportional Velocity	2's complement	r/w ^[3]
R0EH	R14D	Command Position (LSB)	All except Proportional Velocity	2's complement	r/w ^[3]
R0FH	R15D	Sample Timer	All	scalar	r/w
R12H	R18D	Read Actual Position (MSB)	All	2's complement	r ^[4]
R13H	R19D	Read Actual Position	All	2's complement	$r^{[4]}/w^{[5]}$
R14H	R20D	Read Actual Position (LSB)	All	2's complement	$r^{[4]}$
R15H	R21D	Preset Actual Position (MSB)	INIT/IDLE	2's complement	$w^{[8]}$
R16H	R22D	Preset Actual Position	INIT/IDLE	2's complement	w ^[8]
R17H	R23D	Preset Actual Position (LSB)	INIT/IDLE	2's complement	$w^{[8]}$
R18H	R24D	Commutator Ring	All	scalar ^[6,7]	r/w
R19H	R25D	Commutator Velocity Timer	All	scalar	w
R1AH	R26D	X	All	scalar ^[6]	r/w
R1BH	R27D	Y Phase Overlap	All	scalar ^[6]	r/w
R1CH	R28D	Offset	All	2's complement[7]	r/w
R1FH	R31D	Maximum Phase Advance	All	scalar ^[6,7]	r/w
R20H	R32D	Filter Zero, A	All except Proportional Velocity	scalar	r/w
R21H	R33D	Filter Pole, B	All except Proportional Velocity	scalar	r/w
R22H	R34D	Gain, K	All	scalar	r/w
R23H	R35D	Command Velocity (LSB)	Proportional Velocity	2's complement	r/w
R24H	R36D	Command Velocity (MSB)	Proportional Velocity	2's complement	r/w
R26H	R38D	Acceleration (LSB)	Integral Velocity and Trapezoidal Profile	scalar	r/w
R27H	R39D	Acceleration (MSB)	Integral Velocity and Trapezoidal Profile	scalar ^[6]	r/w
R28H	R40D	Maximum Velocity	Trapezoidal Profile	scalar ^[6]	r/w
R29H	R41D	Final Position (LSB)	Trapezoidal Profile	2's complement	r/w
R2AH	R42D	Final Position	Trapezoidal Profile	2's complement	r/w
R2BH	R43D	Final Position (MSB)	Trapezoidal Profile	2's complement	r/w
R34H	R52D	Actual Velocity (LSB)	Proportional Velocity	2's complement	r
R35H	R53D	Actual Velocity (MSB)	Proportional Velocity	2's complement	r
R3CH	R60D	Command Velocity	Integral Velocity	2's complement	r/w

Notes

- 1. Consult appropriate section for data format and use.
- 2. Upper 4 bits are read only.
- 3. Writing to R0EH (LSB) latches all 24 bits.
- 4. Reading R14H (LSB) latches data in R12H and R13H.
- 5. Writing to R13H clears Actual Position Counter to zero.
- 6. The scalar data is limited to positive numbers (00H to 7FH).
- 7. The commutator registers (R18H, R1CH, R1FH) have further limits which are discussed in the Commutator section of this data sheet.
- 8. Writing to R17H (R23D) latches all 24 bits (only in INIT/IDLE mode).

Register Descriptions – General Control, Output, Filter, and Commutator

Flag Register (R00H)

The Flag register contains flags F0 through F5. This register is a read/write register. Each flag is set and cleared by writing an 8-bit data word to R00H. When writing to R00H, the upper four bits are ignored by the HCTL-1100, bits 0,1,2 specify the flag address, and bit 3 specifies whether to set (bit= 1) or clear (bit= 0) the addressed flag.

Flag Descriptions

F0-Trapezoidal Profile Flag – set by the user to execute Trapezoidal Profile Control. The flag is reset by the controller when the move is completed. The status of F0 can be monitored at the Profile pin and in Status register R07H bit 4.

F1-Initialization/Idle Flag – set/cleared by the HCTL-1100 to indicate execution of the Initialization/Idle mode. The status of F1 can be monitored at the Initialization/Idle pin and in bit 5 of the Status register (R07H). The user should not attempt to set or clear F1.

F2-Unipolar Flag – set/cleared by the user to specify Bipolar (clear) or Unipolar (set) mode for the Motor Command port.

F3-Proportional Velocity Control Flag – set by the user to specify Proportional Velocity control.

F4—Hold Commutator flag — set/ cleared by the user or automatically by the Align mode. When set, this flag inhibits the internal commutator counters to allow open loop stepping of a motor by using the commutator. (See "Offset register" description in the "Commutator section.")

F5-Integral Velocity Control – set by the user to specify Integral Velocity Control. Also set and cleared by the HCTL-1100 during execution of the Trapezoidal Profile mode. This is transparent to the user except when the Limit flag is set (see "Emergency Flags" section).

Writing to the Flag Register

When writing to the flag register, only the lower four bits are used. Bit 3 indicates whether to set or clear a certain flag, and bits 0,1,and 2 indicate the desired flag. The following table shows the bit map of the Flag register:

Bit Number	Function
7-4	Don't Care
3	1 = set
	0 = clear
2	AD2
1	AD1
0	AD0

The following table outlines the possible writes to the Flag Register:

Flag	SET	CLEAR
F0	08H	00H
F1	-	-
F2	0AH	02H
F3	0BH	03H
F4	$0\mathrm{CH}$	04H
F5	$0\mathrm{DH}$	05H

Reading the Flag Register

Reading register R00H returns the status of the flags in bits 0 to 5. For example, if bit 0 is set (logic 1), then flag F0 is set. If bit 4 is set, then flag F4 is set. If bits 0 and 5 are set, then both flags F0 and F5 are set.

The following table outlines the Flag Register Read:

Bit Number	Flag (1 = set) (0 = clear)
8-6	Don't Care
5	F5
4	F4
3	F3
2	F2
1	F1
0	F0

Notes:

- 1. A soft reset (writing 00H to R05H) will not reset the flags in the flag register. A hard reset (RESET pin low) is required to reset all the flags. The flags can also be reset by writing the proper word to the Flag register as explained above.
- While in Trapezoid Profile Mode, Flag F0 will be set, and Flag F5 may be set. F5 is used for internal purposes. Both flags will be cleared at the end of the profile.

Program Counter Register (R05H)

The Program Counter, which is a write-only register, executes the preprogrammed functions of the controller. The program counter is used along with the control flags F0, F3, and F5 in the Flag register (R00H) to change control modes. The user can write any of the following four commands to the Program Counter.

Value written to R05H	Action
00H	Software Reset
01H	Enter Init/Idle Mode
02H 03H	Enter Align Mode (only from INIT/ IDLE Mode) Enter Control Mode
	(only from INIT/ IDLE Mode)

These Commands are discussed in more detail in the "Operating Modes" section.

Status Register (R07H)

The Status register indicates the status of the HCTL-1100. Each bit decodes into one signal. All 8 bits are user readable and are decoded as shown below. Only the lower 4 bits can be written to by the user to configure the HCTL-1100. To set or clear any of the lower 4 bits, the user writes an 8-bit word to R07H. The upper 4 bits are ignored. Each of the lower 4 bits directly sets/clears the corresponding bit of the Status register as shown below. For example, writing XXXX0101 to R07H sets the PWM Sign Reversal Inhibit, sets the Commutator Phase Configuration to "3 Phase," and sets the Commutator Count Configuration to "full."

M otor Command Register (R08H)

The 8-bit Motor Command Port consists of register R08H. The register is connected to external pins MC0-MC7. MC7 is the most significant bit. R08H can be read and written to; however, it should be written to only in the Initialization/Idle mode. During any of the four control modes, the HCTL-1100 writes values to register R08H.

The Motor Command Port operates in two modes, bipolar and unipolar, when under control of internal software. Bipolar mode allows the full range of values in R08H (-128D to + 127D). The data written to the Motor Command Port by the control algorithms is the internally

computed 2's-complement motor command with an 80H offset added. This allows direct interfacing to a DAC. Connecting the Motor Command Port to a DAC, Bipolar mode allows the full voltage swing (positive and negative).

Unipolar mode functions such that with the same DAC circuit, the motor command output is restricted to positive values (80H to FFH) when in a control mode. Unipolar mode is used with multi-phase motors when the commutator controls the direction of movement. (If needed, the Sign pin could be used to indicate direction). In Unipolar mode, the user can still write a negative value to R08H in INIT/IDLE mode.

Unipolar mode or Bipolar mode is programmed by setting or clearing flag F2 in the Flag Register R00H.

Internally, the HCTL-1100 operates on data of 24, 16 and 8bit lengths to produce the 8-bit motor command, available externally. Many times the computed motor command will be greater than 8 bits. At this point, the motor command is saturated by the controller. The saturated value output by the controller is not the full scale value 00H (00D), or FFH (255D). The saturated value is adjusted to 0FH (15D) (negative saturation) and F0H (240D) (positive saturation). Saturation levels for the Motor Command port are in Figure 4.

Table 3. Status Register

Status Bit	Function
0	PWM Sign Reversal Inhibit 0 = off 1 = on
1	Commutator Phase Configuration 0 = 3 phase 1 = 4 phase
2	Commutator Count Configuration 0 = quadrature 1 = full
3	Should always be set to 0
4	Trapezoidal Profile Flag F0 1 = in Profile Control
5	Initialization/Idle Flag F1 1 = in Initialization/Idle Mode
6	Stop Flag 0 = set (Stop triggered) 1 = cleared (no Stop)
7	Limit Flag 0 = set (Limit triggered) 1 = cleared (no Limit)

PWM Motor Command Register (R09H)

The PWM port outputs the motor command as a pulse width modulated signal with the correct sign of polarity. The PWM port consists of the Pulse and Sign pins and R09H.

The PWM signal at the Pulse pin has a frequency of External Clock/100 and the duty cycle is

resolved into the 100 clocks. (For example, a 2 MHz clock gives a 20 KHz PWM frequency.)

The Sign pin gives the polarity of the command. Low output on Sign pin is positive polarity.

The 2's-complement contents of R09H determine the duty cycle and polarity of the PWM command. For example, D8H

(-40D) gives a 40% duty cycle signal at the Pulse pin and forces the Sign pin high. Data outside the 64H (+ 100D) to 9CH (-100D) linear range gives 100% duty cycle. R09H can be read and written to. However, the user should only write to R09H when the controller is in the Initialization/Idle mode. Figure 5 shows the PWM output

versus the internal motor command.

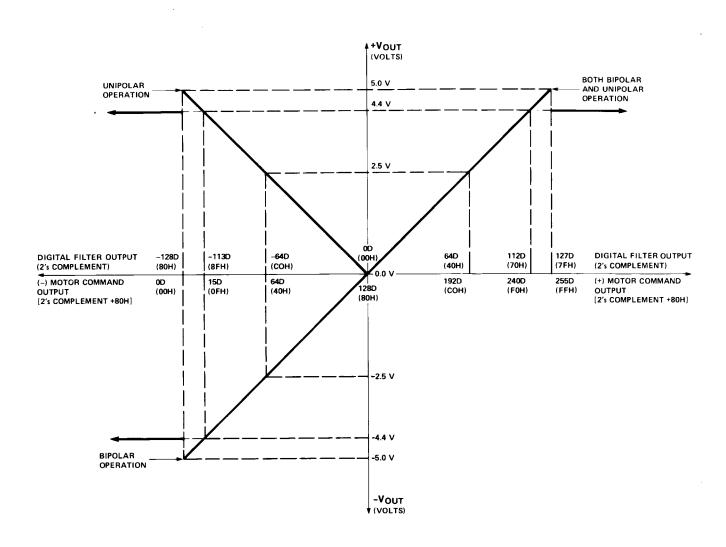


Figure 4. Motor Command Port Output.

When any Control mode is being executed, the unadjusted internal 2's-complement motor command is written to R09H. Because of the hardware limit on the linear range (64H to 9CH, \pm 100D), the PWM port saturates sooner than the 8-bit Motor Command port (00H to FFH, + 127D to -128D). When the internal motor command saturates above 8 bits, the PWM port is saturated to the full

 \pm 100% duty cycle level. Figure 5 shows the actual values inside the PWM port. Note that the Unipolar flag, F2, does *not* affect the PWM port.

For commutation of brushless motors with the PWM port, only use the Pulse pin from the PWM port as the commutator already contains sign information. (See Figure 9.)

The PWM port has an option that can be used with H-bridge type amplifiers. The option is Sign Reversal Inhibit, which inhibits the Pulse output for one PWM period after a sign polarity reversal. This allows one pair of transistors to turn off before others are turned on and thereby avoids a short across the power supply. Bit 0 in the Status register (R07H) controls the Sign Reversal

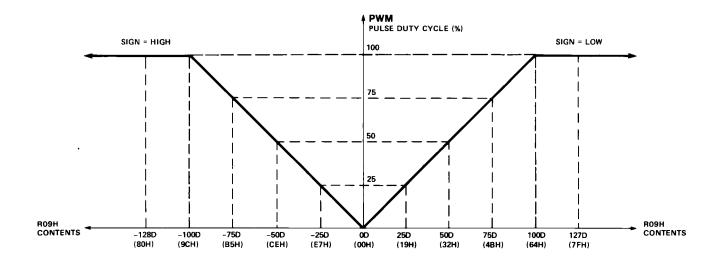


Figure 5. PWM Port Output.

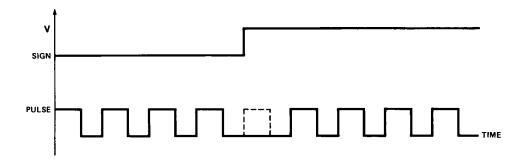


Figure 6. Sign Reversal Inhibit.

Inhibit option. Figure 6 shows the output of the PWM port when Bit 0 is set.

Actual Position Registers

Read, Clear: R12H,R13H,R14H Preset: R15H,R16H,R17H

The Actual Position Register is accessed by two sets of registers in the HCTL-1100. When reading the Actual Position from the HCTL-1100, the host processor will read Registers R12H(MSB), R13H, and R14H(LSB). When presetting the Actual Position Register, the processor will write to Registers R15H(MSB), R16H, and R17H(LSB).

When reading the Actual Position registers, the order should be R14H, R13H, R12H. These registers are latched, such that, when reading Register R14H, all three bytes will be latched so that count data does not change while reading three separate bytes.

When presetting the Actual Position Register, write to R15H and R16H first. When R17H is written to, all three bytes are simultaneously loaded into the Actual Position Register.

Note that presetting the Actual Position Registers is only allowed while the HCTL-1100 is in INIT/IDLE mode.

The Actual Position Registers can be simultaneously cleared at any time by writing any value to R13H.

Digital Filter Registers

Zero (A) R20H Pole (B) R21H Gain (K) R22H

All control modes use some part of the programmable digital filter D(z) to compensate for closed loop system stability. The compensation D(z) has the form:

$$D(z) = \frac{K\left(z - \frac{A}{256}\right)}{4\left(z + \frac{B}{256}\right)}$$
 [1]

where:

z = the digital domain operator
 K = digital filter gain (R22H)
 A = digital filter zero (R20H)
 B = digital filter pole (R21H)

The compensation is a first-order lead filter which in combination with the Sample Timer T (R0FH) affects the dynamic step response and stability of the control system. The Sample Timer, T, determines the rate at which the control algorithm gets executed. All parameters, A, B, K, and T, are 8-bit scalars that can be changed by the user any time.

As shown in equations [2] and [3], the digital filter uses previously sampled data to calculate D(z). This old internally sampled data is cleared when the Initialization/Idle mode is executed.

In Position Control, Integral Velocity Control, and Trapezoidal Profile Control the digital filter is implemented in the time domain as shown below:

$$\begin{aligned} MC_{n} &= (K/4)(X_{n}) - \\ &= [(A/256)(K/4)(X_{n-1}) + \\ &= (B/256)(MC_{n-1})] \end{aligned} [2]$$

where:

$$\begin{split} n &= \text{ current sample time} \\ n-1 &= \text{ previous sample time} \\ MC_n &= \text{ Motor Command Output} \\ \text{ at n} \\ MC_{n-1} &= \text{ Motor Command} \\ \text{ Output at n-1} \\ X_n &= \text{ (Command Position } - \\ \text{ Actual Position) at n} \\ X_{n-1} &= \text{ (Command Position } - \\ \text{ Actual Position) at n-1} \end{split}$$

In Proportional Velocity control the digital compensation filter is implemented in the time domain as:

$$MC_n = (K/4)(Y_n)$$
 [3]

where:

 Y_n = (Command Velocity – Actual Velocity) at n

For more information on system sampling times, bandwidth, and stability, please consult Avago Application Note 1032, Design of the HCTL-1000's Digital Filter Parameters by the Combination Method.

Sample Timer Register (R0FH)

The contents of this register set the sampling period of the HCTL-1100. The sampling period is:

t = 16(T+1)(1/frequency of theexternal clock) [4]

where:

T = contents of register R0FH

The Sample Timer has a limit on the minimum allowable sample time depending on the control mode being executed. The limits are given in Table 4 below.

The minimum value limits are to make sure the internal programs have enough time to complete proper execution.

The maximum value of T (R0FH) is FFH (255D). With a 2 MHz clock, the sample time can vary from 64 μsec to 2048 μsec . With a 1 MHz clock, the sample time can vary from 128 μsec to 4096 μsec .

Digital closed-loop systems with slow sampling times have lower stability and a lower bandwidth than similar systems with faster sampling times. To keep the system stability and bandwidth as high as possible the HCTL-1100 should typically be programmed with the fastest sampling time possible. This rule of thumb must be balanced by the needs of the velocity range to be controlled. Velocities are specified to the HCTL-1100 in terms of quadrature encoder counts per sample time. The faster the sampling time, the higher the slowest possible speed.

Hardware Description

The Sample Timer consists of a buffer and a decrement counter. Each time the counter reaches 00H, the Sampler Timer Value T (value written to R0FH) is loaded from the buffer into the counter, which immediately begins to decrement from T.

Writing to the Sample Timer Register

Data written to R0FH will be latched into the internal buffer and used by the counter after it completes the present sample time cycle by decrementing to 00H. The next sample time will use the newly written data.

Reading the Sample Timer Register

Reading R0FH gives the values directly from the decrementing counter. Therefore, the data read from R0FH will have a value anywhere between T and 00H, depending where in the sample time cycle the counter is.

Table 4.

Control Mode	R0FH Contents Minimum Limit
Position Control	07H(07D)
Proportional Velocity Control	07H(07D)
Trapezoidal Profile Control	0FH(15D)
Integral Velocity Control	0FH(15D)

Example -

- 1. On reset, the value of the timer is pre-set to 40H.
- 2. Reading R0FH shows 3EH . . . 2BH . . . 08H . . . 3CH . . .

Synchronizing Multiple Axes

Synchronizing multiple axes with HCTL-1100s can be achieved by using the SYNC pin as explained in the Pin Discussion section. Some users may not only want to synchronize several HCTL-1100s but also follow custom profiles for each axis. To do this, the user may need to write a new command position or command velocity during each sample time for the duration of the profile. In this case, data written to the HCTL-1100 has to be coordinated with the Sample Timer. This is so that only one command position or velocity is received during any one sample period, and that it is written at the proper time within a sample period.

At the beginning of each sample period, the HCTL-1100 is performing calculations and executions. New command positions and velocities should not be written to the HCTL-1100 during this time. If they are, the calculations may be thrown off and cause unpredictable control.

The user can read the Sample Timer Register to avoid writing too early during a sample period. Since the Sample Timer Register continuously counts down from its programmed value, the user can check if enough time has passed in the sample period to insure the completion of the internal calculations. The length of time needed by the HCTL-1100

to do its calculations is given by the Minimum Limits of R0FH (Sample Timer Register) as shown in Table 4. For Position Control Mode, the user should wait for the Sample Timer to count down 07H from its programmed value before writing the next command position or velocity. If the programmed sample timer value is 39H, wait until the Sample Timer Register reads 32H. Writing between 32H and 00H will make the command information available for the next sample period.

Commutator

Status Register	(R07H)
Commutator Ring	(R18H)
X Register	(R1AH)
Y Phase Overlap	(R1BH)
Offset	(R1CH)
Max. Phase Advance	(R1FH)
Velocity Timer	(R19H)

The commutator is a digital state machine that is configured by the user to properly select the phase sequence for electronic commutation of multiphase motors. The Commutator is designed to work with 2, 3, and 4-phase motors of various winding configurations and with various encoder counts. Along with providing the correct phase enable sequence, the Commutator provides programmable phase overlap, phase advance, and phase offset.

Phase overlap is used for better torque ripple control. It can also be used to generate unique state sequences which can be further decoded externally to drive more complex amplifiers and motors. Phase advance allows the user to compensate for the frequency characteristics of the motor/amplifier combination. By advancing the phase enable command (in position), the delay in reaction of the motor/amplifier combination can be offset and higher performance can be achieved.

Phase offset is used to adjust the alignment of the commutator output with the motor torque curves. By correctly aligning the HCTL-1100's commutator output with the motor's torque curves, maximum motor output torque can be achieved.

The inputs to the Commutator are the three encoder signals, Channel A, Channel B, and Index, and the configuration data stored in registers. The Commutator uses both channels and the index pulse of an incremental encoder. The index pulse of the encoder must be physically aligned to a known torque curve location because it is used as the reference point of the rotor position with respect to the Commutator phase enables.

The index pulse should be permanently aligned during motor encoder assembly to the last motor phase. This is done by energizing the last phase of the motor during assembly and permanently attaching the encoder codewheel to the motor shaft such that the index pulse is active as shown in Figures 7 and 8. Fine tuning of alignment for commutation purposes is done electronically by the Offset register (R1CH) once the complete control system is set up.

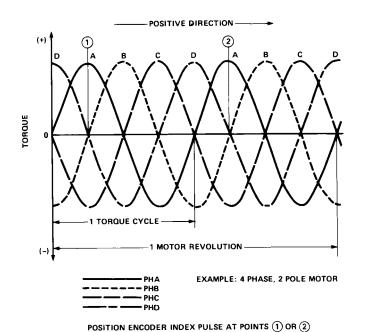


Figure 7. Index Pulse Alignment to Motor Torque Curves.