: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

20 mm (0.8 inch) Seven Segment Displays

Data Sheet

Description

The 20 mm (0.8 inch) LED seven segment displays are designed for viewing distances up to 10 metres (33 feet). These devices use an industry standard size package and pinout. All devices are available as either common anode or common cathode.

Applications

These displays are ideal for most applications. Pin for pin equivalent displays are also available in a low current design. The low current displays are ideal for portable applications. For additional information see the Low Current Seven Segment Displays data sheet.

Features

- Industry standard size
- Industry standard pinout 15.24 mm (0.6 in .) DIP leads on 2.54 mm (0.1 in .) centers
- Choice of Colors AIGaAs Red, High Efficiency Red, Yellow, Green
- Excellent appearance Evenly lighted segments Mitered corners on segments Gray package gives optimum contrast $\pm 50^{\circ}$ viewing angle
- Design flexibility Common anode or common cathode Left and right hand decimal points
- Categorized for luminous intensity Yellow and green categorized for color Use of like categories yields a uniform display
- High light output
- High peak current
- Excellent for long digit string multiplexing intensity and color selection option
See Intensity and Color Selected Displays Data Sheet
- Sunlight viewable AIGaAs

Devices

AIGaAs ${ }^{[1]}$	HER	Yellow	Green	Description	Package Drawing
HDSP-N150	HDSP-3900			Common Anode Left Hand Decimal	A
HDSP-N151	HDSP-3901	HDSP-4201	HDSP-8601	Common Anode Right Hand Decimal	B
HDSP-N153	HDSP-3903	HDSP-4203	HDSP-8603	Common Cathode Right Hand Decimal	C
	HDSP-3905			Common Cathode Left Hand Decimal	D

Notes:

1. These displays are recommended for high ambient light operation. Please refer to the HDSP-N10x AIGaAs data sheet for low current operation.

Part Numbering System

5082-XXXX-XXXXX

Notes:

1. For codes not listed in the figure above, please refer to the respective datasheet or contact your nearest Avago representative for details.
2. Bin options refer to shippable bins for a part number. Color and Intensity Bins are typically restricted to 1 bin per tube (exceptions may apply). Please refer to respective datasheet for specific bin limit information.

Package Dimensions

FRONT VIEW A, D

END VIEW

FUNCTION				
PIN	A	B	C	D
1	NO PIN	NO PIN	NO PIN	NO PIN
2	CATHODE a	CATHODE a	ANODE a	ANODE a
3	CATHODE f	CATHODE f	ANODEf	ANODE f
4	ANODE ${ }^{[3]}$	ANODE ${ }^{[3]}$	CATHODE ${ }^{[6]}$	CATHODE ${ }^{[6]}$
5	CATHODE e	CATHODE	ANODE	ANODE
6	ANODE ${ }^{[3]}$	ANODE ${ }^{[3]}$	CATHODE ${ }^{[6]}$	CATHODE ${ }^{[6]}$
7	CATHODE dp	NO CONNEC.	NO CONNEC.	ANODE dp
8	NO PIN	NO PIN	NO PIN	NO PIN
9	NO PIN	NO PIN	NO PIN	N0 PIN
10	N0 PIN	CATHODE dp	ANODE dp	NO PIN
11	CATHODE d	CATHODE d	ANODE d	ANODE d
12	ANODE ${ }^{[3]}$	ANODE ${ }^{[3]}$	CATHODE ${ }^{[6]}$	CATHODE ${ }^{[6]}$
13	CATHODE c	CATHODE C	ANODE C	ANODE C
14	CATHODE g	CATHODE g	ANODE g	ANODE g
15	CATHODE b	CATHODE b	ANODE b	ANODE b
16	NO PIN	NO PIN	NO PIN	NO PIN
17	ANODE ${ }^{[3]}$	ANODE ${ }^{[3]}$	CATHODE ${ }^{[6]}$	CATHODE ${ }^{[6]}$
18	NO PIN	NO PIN	NO PIN	N0 PIN

FRONT VIEW B, C

SIDE VIEW

* the side view of package INDICATES COUNTRY OF ORIGIN.

NOTES:

1. DIMENSIONS IN MILLIMETERS AND (INCHES).
2. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY.
3. REDUNDANT ANODES
4. REDUNDANT ANODES.
5. UNUSED dp POSITION.
6. SEE INTERNAL IIRCUIT DIAGRAM
7. REDUNDANT CATHODES.
8. FOR HDSP-420x/-860x SERIES PRODUCT ONLY.

Internal Circuit Diagram

Absolute Maximum Ratings

	AIGaAs Red HDSP-N150 Series	HER HDSP-3900 Series	Yellow HDSP-420x Series	Green HDSP-860x Series	Units
Description	96	105	105	105	mW
Average Power per Segment or DP	$160^{[1]}$	$135[3]$	$135^{[3]}$	$90^{[5]}$	mA
Peak Forward Current per Segment or DP	$40^{[2]}$	$40^{[4]}$	$40^{[4]}$	$30^{[6]}$	mA
DC Forward Current per Segment or DP	-20 to $+100[7]$	-40 to +100	-40 to +100	${ }^{\circ}{ }^{\circ} \mathrm{C}$	
Operating Temperature Range		-55 to +100	${ }^{\circ} \mathrm{C}$		
Storage Temperature Range	3.0	V			
Reverse Voltage* per Segment or DP	250	${ }^{\circ} \mathrm{C}$			

* reverse voltage is for LED testing purposes and is not recommended to be used as an application condition.

Notes:

1. See Figure 2 to establish pulsed conditions.
2. Derate above $55^{\circ} \mathrm{C}$ at $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. See Figure 7 to establish pulsed conditions.
4. Derate above $50^{\circ} \mathrm{C}$ at $0.73 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
5. See Figure 8 to establish pulsed conditions.
6. Derate above $50^{\circ} \mathrm{C}$ at $0.54 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
7. For operation below $-20^{\circ} \mathrm{C}$, contact your local Avago components sales office or an authorized distributor.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

AIGaAs Red

Device Series - HDSP-N15x

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Luminous Intensity/Segment ${ }^{[11,2,5]}$ (Digit Average)	IV_{V}	6.0	14.0		mcd	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
Forward Voltage/Segment or DP	V_{F}		1.8		V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
			2.0	3.0	V	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$
Peak Wavelength	$\lambda_{\text {PEAK }}$		645		nm	
Dominant Wavelength ${ }^{[3]}$	$\lambda_{\text {d }}$		637		nm	
Reverse Voltage/Segment or DP ${ }^{[4]}$	$V_{\text {R }}$	3.0	15		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
Temperature Coefficient of $\mathrm{V}_{\mathrm{F}} /$ Segment or DP	$\Delta V_{F} /{ }^{\circ} \mathrm{C}$		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
Thermal Resistance LED Junction-to-Pin	R $\theta_{\text {J-PIN }}$		430		${ }^{\circ} \mathrm{C} / \mathrm{W} /$	

High Efficiency Red

Device Series - HDSP-390x

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Luminous Intensity/Segment ${ }^{[1,2]}$ (Digit Average)	I_{V}	3350	7000		$\mu \mathrm{cd}$	$\begin{aligned} & I_{F}=100 \mathrm{~mA} \text { Peak: } \\ & 1 \text { of } 5 \mathrm{df} \end{aligned}$
			4800		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
Forward Voltage/Segment or DP	$V_{\text {F }}$		2.6	3.5	V	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$
Peak Wavelength	$\lambda_{\text {PEAK }}$		635		nm	
Dominant Wavelength ${ }^{[3]}$	λ_{d}		626		nm	
Reverse Voltage/Segment or DP ${ }^{[4]}$	$V_{\text {R }}$	3.0	25		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
Temperature Coefficient of $\mathrm{V}_{\mathrm{F}} /$ Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
Thermal Resistance LED Junction-to-Pin	$R \theta_{\text {J-PIN }}$		375		${ }^{\circ} \mathrm{C} / \mathrm{W} /$	

Yellow

Device Series - HDSP-420x

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Luminous Intensity/Segment ${ }^{[1,2]}$ (Digit Average)	I_{V}		2200	7000	$\mu \mathrm{cd}$	$\begin{aligned} & I_{F}=100 \mathrm{~mA} \text { Peak: } \\ & 1 \text { of } 5 \mathrm{df} \end{aligned}$
			3400		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
Forward Voltage/Segment or DP	$V_{\text {F }}$		2.6	3.5	V	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$
Peak Wavelength	$\lambda_{\text {PEAK }}$		583		nm	
Dominant Wavelength ${ }^{[3,6]}$	λ_{d}	581.5	586	592.5	nm	
Reverse Voltage/Segment or DP ${ }^{[4]}$	$V_{\text {R }}$	3.0	25.0		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
Temperature Coefficient of $\mathrm{V}_{\mathrm{F}} /$ Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
Thermal Resistance LED Junction-to-Pin	$\mathrm{R} \theta_{\text {J-PIN }}$		375		${ }^{\circ} \mathrm{C} / \mathrm{W} /$	

Green
Device Series - HDSP-860x

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Luminous Intensity/Segment ${ }^{[1,2]}$ (Digit Average)	I_{V}	680	1500		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
			1960		$\mu \mathrm{cd}$	$\begin{aligned} & I_{F}=50 \mathrm{~mA} \text { Peak: } \\ & 1 \text { of } 5 \mathrm{df} \end{aligned}$
Forward Voltage/Segment or DP	$V_{\text {F }}$		2.1	2.5	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
Peak Wavelength	$\lambda_{\text {PEAK }}$		566		nm	
Dominant Wavelength ${ }^{[3,6]}$	λ_{d}		571	577	nm	
Reverse Voltage/Segment or DP ${ }^{[4]}$	$V_{\text {R }}$	3.0	50.0		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
Temperature Coefficient of $\mathrm{V}_{\mathrm{F}} /$ Segment or DP	$\Delta V_{F} /{ }^{\circ} \mathrm{C}$		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
Thermal Resistance LED Junction-to-Pin	$R \theta_{\text {J-PIN }}$		375		${ }^{\circ} \mathrm{C} / \mathrm{W}$	

Notes:

1. Case temperature of the device immediately prior to the intensity measurement is $25^{\circ} \mathrm{C}$.
2. The digits are categorized for luminous intensity. The intensity category is designated by a letter on the side of the package.
3. The dominant wavelength, Id, is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device.
4. Typical specification for reference only. Do not exceed absolute maximum ratings.
5. For low current operation, the AIGaAs Red HDSP-N100 series displays are recommended. They are tested at 1 mA dc/segment and are pin for pin compatible with the HDSP-N150 series.
6. The Yellow (HDSP-420x) and Green (HDSP-860x) displays are categorized for dominant wavelength. The category is designated by a number adjacent to the luminous intensity category letter.

AIGaAs Red

Figure 1. Maximum allowed peak current vs. pulse duration - AlGaAs Red.

Figure 2. Maximum allowable DC current vs. ambient temperature.

$$
\begin{aligned}
& 2.50 \\
& \hline
\end{aligned}
$$

Figure 4. Relative luminous intensity vs. DC forward current.

Figure 3. Forward current vs. forward voltage.

Figure 5. Relative efficiency (luminous intensity per unit current) vs. peak current.

HER, Yellow, Green

Figure 6. Maximum allowed peak current vs. pulse duration - HER, Yellow.

Figure 8. Maximum allowable DC current vs. ambient temperature.

Figure 10. Relative luminous intensity vs. DC forward current.

Figure 7. Maximum allowed peak current vs. pulse duration - Green.

Figure 9. Forward current vs. forward voltage.

Figure 11. Relative efficiency (luminous intensity per unit current) vs. peak current.

Intensity Bin Limits (mcd) AIGaAs Red - HDSP-N15x		
IV Bin Category	Min.	Max.
J	6.14	11.20
K	9.20	16.90
L	13.80	25.30
M	20.70	38.00
N	31.10	56.90
O	46.60	85.40

Yellow - HDSP-420x

IV Bin Category	Min.	Max.
C	2.23	4.09
D	3.35	6.14
E	5.02	9.21
F	7.53	13.82
G	11.30	20.72
H	16.95	31.08
I	25.43	46.62

Green - HDSP-860x

IV Bin Category	Min.	Max.
D	1.03	1.88
E	1.54	2.82
F	2.31	4.25
G	3.47	6.37
H	5.21	9.55

HER - HDSP-390x

IV Bin Category	Min.	Max.
D	3.35	6.14
E	5.02	9.21
F	7.53	13.82
G	11.30	20.72
H	16.95	31.08
I	25.43	46.62

Color Categories

	Dominant Wavelength (nm)		
Color	Bin	Min.	Max.
Yellow	1	581.50	585.00
	3	584.00	587.50
	2	586.50	590.00
	4	589.00	592.50
Green	2	573.00	577.00
	3	570.00	574.00
	4	567.00	571.00
	5	564.00	568.00

Note:
All categories are established for classification of products. Products may not be available in all categories. Please contact your Avago representatives for further clarification/information.

Contrast Enhancement

For information on contrast enhancement, please see Application Note 1015.

Soldering/Cleaning

Cleaning agents from the ketone family (acetone, methyl ethyl ketone, etc.) and from the chlorinated hydrocarbon family (methylene chloride, trichloro- ethylene, carbon tetrachloride, etc.) are not recommended for cleaning LED parts. All of these various solvents attack or dissolve the encapsulating epoxies used to form the package of plastic LED parts.
For information on soldering LEDs, please refer to Application Note 1027.

