

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

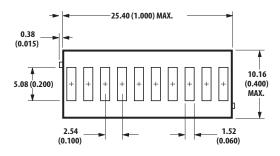
HDSP-4830/4840/4850, HDSP-4832/4836 & HLCP-J100

10-Element Bar Graph Array

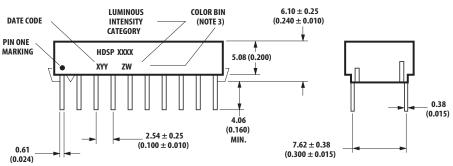
Data Sheet

Description

These 10-element LED arrays are designed to display information in easily recognizable bar graph form. The packages are end stackable and therefore capable of displaying long strings of information. Use of these bar graph arrays eliminates the alignment, intensity, and color matching problems associated with discrete LEDs. The HDSP-4830/4840/4850 and HLCPJ100 each contain LEDs of one color. The HDSP-4832/4836 are multicolor arrays with High Efficiency Red, Yellow, and High Performance Green LEDs in a single package.


Applications

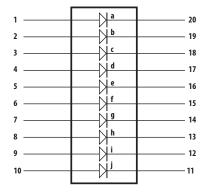
- Industrial Controls
- Instrumentation
- Office Equipment
- Computer Peripherals
- Consumer Products


Features

- Custom Multicolor Array Capability
- Matched LEDs for Uniform Appearance
- End Stackable
- Package Interlock Ensures Correct Alignment
- Low Profile Package
- Rugged Construction
- Large, Easily Recognizable Segments
- High ON-OFF Contrast, Segment to Segment
- Wide Viewing Angle
- · Categorized for Luminous Intensity
- HDSP-4832/4836/4840/4850 Categorized for Dominant Wavelength
- HLCP-J100 Operates at Low Current
 Typical Intensity of 1.0 mcd at 1 mA Drive Current

Package Dimensions

- DIMENSIONS IN MILLIMETERS (INCHES).
 ALL UNTOLERANCED DIMEMSIONS FOR REFERENCE ONLY.
- 3. HDSP-4832/-4836/-4840/-4850 ONLY.


Absolute Maximum Ratings [1]

Parameter	AlGaAs Red HLCP-J100	HER HDSP-4830	Yellow HDSP-4840	Green HDSP-4850			
Average PowerDissipation per LED (T _A = 25°C)	37 mW	87 mW	50 mW	105 mW			
Peak Forward Current per LED	45 mA ^[3]	90 mA ^[4]	60 mA ^[4]	90 mA ^[4]			
DC Forward Current per LED	15 mA ^[5]	30 mA ^[6]	20 mA ^[6]	30 mA ^[6]			
Operating Temperature Range	-20°C to +100°C	-40°C to +85°C		-20°C to +85°C			
Storage Temperature Range	-55°C to +100°C -40°C to +85°C						
Reverse Voltage per LED	5.0 V 3.0 V						
Lead Solder Dipping Temperature (1.59 mm (1/16 inch) below seating plane) ^[7]	260°C for 5 seconds ^[8]						
Wave Soldering Temperature (at 2 mm distance from the body)		250°C for	3 seconds				

Notes:

- 1. Absolute maximum ratings for HER, Yellow, and Green elements of the multicolor arrays are identical to the HDSP-4830/4840/4850 maximum ratings.
- 2. See Figure 1 to establish pulsed operating conditions. Maximum pulse width is 1.5 ms.
- 3. See Figure 2 to establish pulsed operating conditions. Maximum pulse width is 1.5 ms.
- 4. See Figure 8 to establish pulsed operating conditions. Maximum pulse width is 2 ms.
- 5. Derate maximum DC current for Red above $T_A = 62^{\circ}\text{C}$ at 0.79 mA/°C, and AlGaAs Red above $T_A = 91^{\circ}\text{C}$ at 0.8 mA/°C. See Figure 3.
- 6. Derate maximum DC current for HER above T_A = 48°C at 0.58 mA/°C, Yellow above T_A = 70°C at 0.66 mA/°C, and Green above T_A = 37°C at 0.48 mA/°C. See Figure 9.
- 7. Clean only in water, isopropanol, ethanol, Freon TF or TE (or equivalent), or Genesolve DI-15 (or equivalent).
- 8. Maximum tolerable component side temperature is 134°C during solder process.

Internal Circuit Diagram

Pin	Function	Pin	Function
1	Anode a	11	Cathode j
2	Anode b	12	Cathode I
3	Anode c	13	Cathode h
4	Anode d	14	Cathode g
5	Anode e	15	Cathode f
6	Anode f	16	Cathode e
7	Anode g	17	Cathode d
8	Anode h	18	Cathode c
9	Anode i	19	Cathode b
10	Anode j	20	Cathode a

Multicolor Array Segment Colors

	HDSP-4832	HDSP-4836
Segment	Segment Color	Segment Color
a	HER	HER
b	HER	HER
С	HER	Yellow
d	Yellow	Yellow
е	Yellow	Green
f	Yellow	Green
g	Yellow	Yellow
h	Green	Yellow
i	Green	HER
j	Green	HER

Electrical/Optical Characteristics at $T_A = 25^{\circ}C^{[4]}$

AlGaAs Red HLCP-J100

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Luminous Intensity per LED	Ι _V	600	1000		μcd	$I_F = 1 \text{ mA}$
(Unit Average) ^[1]			5200			$I_F = 20 \text{ mA Pk};$
						1 of 4 Duty Factor
Peak Wavelength	λ_{PEAK}		645		nm	
Dominant Wavelength ^[2]	λ_{d}		637		nm	
Forward Voltage per LED	V_{F}		1.6		V	$I_F = 1 \text{ mA}$
			1.8	2.2	_	I _F = 20 mA
Reverse Voltage per LED ^[5]	V _R	5	1.5		V	$I_R = 100 \mu A$
Temperature Coefficient V _F per LED	ΔV _F /°C		-2.0		mV/°C	
Thermal Resistance LED Junction-to-Pin	$R\theta_{J-PIN}$		300		°C/W/LED	

High Efficiency Red HDSP-4830

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Luminous Intensity per LED (Unit Average) ^[1,4]	ly	900	3500		μcd	$I_F = 10 \text{ mA}$
Peak Wavelength	λρεακ	,	635		nm	
Dominant Wavelength ^[2]	λ_{d}		626		nm	
Forward Voltage per LED	V _F		2.1	2.5	V	$I_F = 20 \text{ mA}$
Reverse Voltage per LED ^[5]	V _R	3	30		V	$I_R = 100 \mu A$
Temperature Coefficient V _F per LED	ΔV _F /°C		-2.0		mV/°C	
Thermal Resistance LED Junction-to-Pin	Rθ _{J-PIN}		300		°C/W/LED	

Yellow HDSP-4840

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Luminous Intensity per LED (Unit Average)[1,4]	l _V	600	1900		μcd	$I_F = 10 \text{ mA}$
Peak Wavelength	λρεακ		583		nm	
Dominant Wavelength ^[2,3]	λ_{d}	581	585	592	nm	
Forward Voltage per LED	V _F		2.2	2.5	V	$I_F = 20 \text{ mA}$
Reverse Voltage per LED ^[5]	V _R	3	40		V	$I_R = 100 \mu A$
Temperature Coefficient V _F per LED	ΔV _F /°C		-2.0		mV/°C	
Thermal Resistance LED Junction-to-Pin	Rθ _{J-PIN}		300		°C/W/LED	

Green HDSP-4850

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Luminous Intensity per LED (Unit Average) ^[1,4]	ly	600	1900		μcd	$I_F = 10 \text{ mA}$
Peak Wavelength	λ_{PEAK}		566		nm	
Dominant Wavelength ^[2,3]	λ_{d}		571	577	nm	
Forward Voltage per LED	V_{F}		2.1	2.5	V	$I_F = 20 \text{ mA}$
Reverse Voltage per LED ^[5]	V _R	3	50		V	I _R = 100 μA
Temperature Coefficient V _F per LED	ΔV_F / $^{\circ}$ C		-2.0		mV/°C	
Thermal Resistance LED Junction-to-Pin	$R\theta_{J-PIN}$		300		°C/W/LED	

Notes:

- 1. The bar graph arrays are categorized for luminous intensity. The category is designated by a letter located on the side of the package.
- 2. The dominant wavelength, λd, is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device.
- 3. The HDSP-4832/-4836/-4840/-4850 bar graph arrays are categorized by dominant wavelength with the category designated by a number adjacent to the intensity category letter. Only the yellow elements of the HDSP-4832/-4836 are categorized for color.
- 4. Electrical/optical characteristics of the High-Efficiency Red elements of the HDSP-4832/-4836 are identical to the HDSP-4830 characteristics. Characteristics of Yellow elements of the HDSP-4832/-4836 are identical to the HDSP-4840. Characteristics of Green elements of the HDSP-4832/-4836 are identical to the HDSP-4850.
- 5. Reverse voltage per LED should be limited to 3.0 V max. for the HDSP-4830/-4840/-4850/-4832/-4836 and 5.0 V max. for the HLCP-J100.

Red, AlGaAs Red

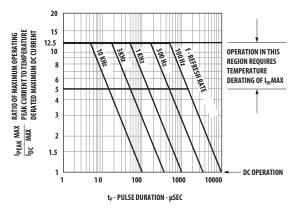


Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration – Red.

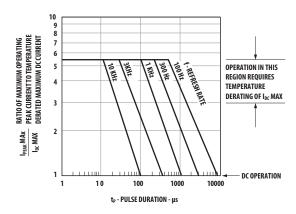


Figure 2. Maximum Tolerable Peak Current vs. Pulse Duration – AlGaAs Red.

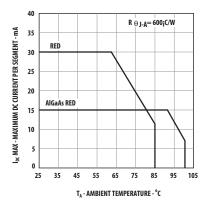


Figure 3. Maximum Allowable DC Current vs. Ambient Temperature. $T_{JMAX} = 100^{\circ}\text{C for Red and }T_{JMAX} = 110^{\circ}\text{C for AlGaAs Red.}$

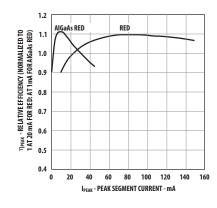


Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

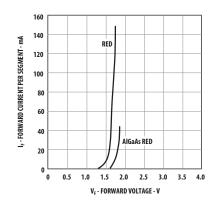


Figure 5. Forward Current vs. Forward Voltage.

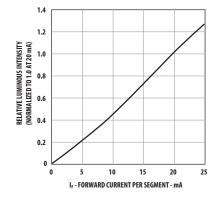


Figure 6. Relative Luminous Intensity vs. DC Forward Current – Red.

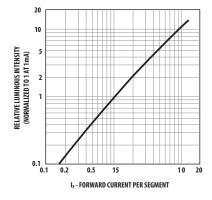


Figure 7. Relative Luminous Intensity vs. DC Forward Current – AlGaAs.

For a Detailed Explanation on the Use of Data Sheet Information and Recommended Soldering Procedures, See Application Note 1005.

HER, Yellow, Green

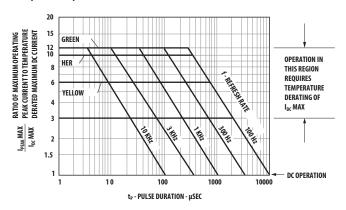


Figure 8. Maximum Tolerable Peak Current vs. Pulse Duration –

HER/Yellow/Green.

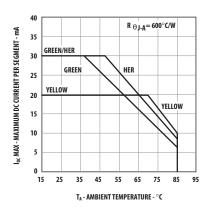


Figure 9. Maximum Allowable DC Current vs. Ambient Temperature. TJMAX = 100°C.

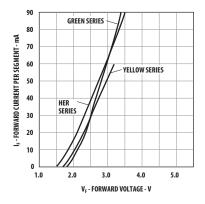


Figure 11. Forward Current vs. Forward Voltage.

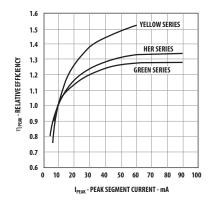


Figure 10. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

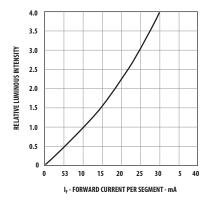


Figure 12. Relative Luminous Intensity vs. DC Forward Current.

For a Detailed Explanation on the Use of Data Sheet Information and Recommended Soldering Procedures, See Application Note 1005.

Electrical/Optical

These versatile bar graph arrays are composed of ten light emitting diodes. The light from each LED is optically stretched to form individual elements. The AlGaAs Red (HLCP-J100) bar graph array LEDs use double heterojunction AlGaAs on a GaAs substrate. HER (HDSP-4830) and Yellow (HDSP-4840) bar graph array LEDs use a GaAsP epitaxial layer on a GaP substrate. Green (HDSP-4850) bar graph array LEDs use liquid phase GaP epitaxial layer on a GaP substrate. The multicolor bar graph arrays (HDSP-4832/4836) have HER, Yellow, and Green LEDs in one package. These displays are designed for strobed operation. The typical forward voltage values can be scaled from Figures 5 and 11. These values should be used to calculate the current limiting resistor value and typical power consumption. Expected maximum V_F values for driver circuit design and maximum power dissipation may be calculated using the V_{FMAX} models:

AlGaAs Red HLCP-J100 series $V_FMAX = 1.8 V + I_{Peak}$ (20 Ω)

For: I_{Peak} ≤ 20 mA

 $V_FMAX = 2.0 V + I_{Peak} (10 \Omega)$

For: $I_{Peak} \ge 20 \text{ mA}$

HER (HDSP-4830) and Yellow

(HDSP-4840) series

$$\begin{split} &V_F MAX = 1.6 + I_{Peak} \, (45 \, \Omega) \\ &For: 5 \, mA \leq I_{Peak} \leq 20 \, mA \\ &V_F MAX = 1.75 + I_{Peak} \, (38 \, \Omega) \end{split}$$

For: I_{Peak} ≥ 20 mA

Green (HDSP-4850) series $V_FMAX = 2.0 + I_{Peak}$ (50 Ω)

For: $I_{Peak} > 5 \text{ mA}$

Figures 4 and 10 allow the designer to calculate the luminous intensity at different peak and average currents. The following equation calculates intensity at different peak and average currents:

 $I_VAVG = (I_FAVG/I_FAVG DATA SHEET)\eta_{peak})(I_VDATA SHEET)$

Where:

I_VAVG is the calculated time averaged luminous intensity resulting from I_FAVG.

I_FAVG is the desired time averaged LED current.

 I_F AVG DATA SHEET is the data sheet test current for I_V DATA SHEET.

 η_{peak} is the relative efficiency at the peak current, scaled from Figure 4 or 10.

I_V DATA SHEET is the data sheet luminous intensity, resulting from I_FAVG DATA SHEET.

For example, what is the luminous intensity of an HDSP-4830 driven at 50 mA peak 1/5 duty factor?

 $I_FAVG = (50 \text{ mA}) (0.2) = 10 \text{ mA}$

I_FAVG DATA SHEET = 10 mA

 $\eta_{peak} = 1.3$

 I_V DATA SHEET = 3500 μ cd

Therefore

 $I_VAVG = (10 \text{ mA}/10 \text{ mA}) (1.3) (3500 \text{ mcd}) = 4550 \text{ mcd}$

