imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HDSP-Fxxx Series

10 mm (0.40 inch) Seven Segment Displays

Data Sheet

HDSP-F15x/F16x Series HDSP-F20x/F30x/F40x/F50x Series

Description

The 10 mm (0.40 inch) LED seven segment displays are Avago's most space-efficient character size. They are designed for viewing distances up to 4.5 metres (15 feet). These devices use an industry standard size package and pinout. The dual numeric, single numeric, and ± 1 . overflow devices feature a right hand decimal point. All devices are available as either common anode or common cathode.

Typical applications include instruments, point of sale terminals, and appliances.

Features

- Industry standard size
- Industry standard pinout
 7.6 mm (0.3 inch) DIP single
 15.24 mm (0.6 inch) DIP dual
 Leads on 2.54 mm (0.1 inch) centers
- Choice of colors

AlGaAs Red, High Efficiency Red, Orange, Yellow, Green

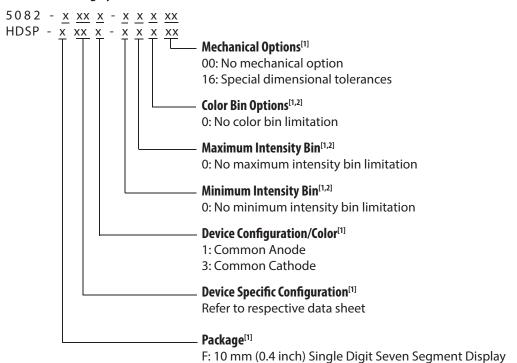
Features (Cont.)

- Excellent appearance

 Evenly lit segments
 Mitered segment corners
 Gray package provides optimum contrast
 Black surface and color tinted epoxy*
 *(HDSP-F161 only)
 ±50° viewing angle
- Design flexibility| Common anode or common cathode Single and dual digits Right hand decimal point ±1. overflow character
- Categorized for luminous intensity Yellow and Green categorized for color Use of like categories yields a uniform display
- High light output
- High peak current
- Excellent for long digit string multiplexing
- Intensity and color selection option
- Sunlight viewable AlGaAs

11	AVICAC
υ	evices
-	

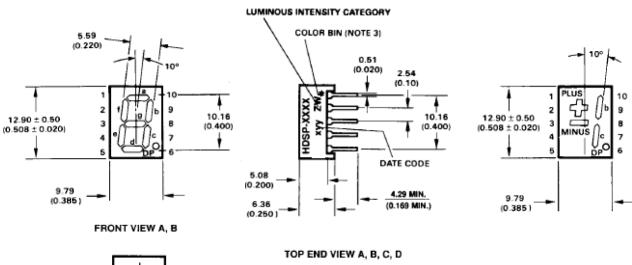
HER HDSP·	Orange Yellow Green - HDSP- HDSP- HDSP-	-	Package Drawing
F201	F401 F301 F501	Common Anode Right Hand Decimal	А
		Common Anode Right Hand Decimal	А
F203	F403 F303 F503	Common Cathode Right Hand Decimal	В
F207		Common Anode ±1. Overflow	С
F208		Common Cathode $\pm 1.$ Overflow	D
F208		Common Cathode ±1	. Overflow


Note:

1. These displays are recommended for high ambient light operation. Please refer to the HDSP-F10X data sheet for low current operation.

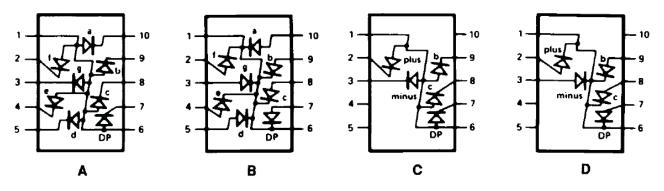
Part Numbering System

Notes:


Package Dimensions

q

7.62


0.25

- 1. For codes not listed in the figure above, please refer to the respective data sheet or contact your nearest Avago representative for details.
- 2. Bin options refer to shippable bins for a part-number. Color and Intensity Bins are typically restricted to 1 bin per tube (exceptions may apply). Please refer to respective data sheet for specific bin limit information.

*The End View of package indicates Country of Origin.

Internal Circuit Diagram

	FUNCTION							
PIN	A	В	C	D				
1	ANODE ^[1]	CATHODE ^[2]	ANODE ^[1]	CATHODE ^[2]				
2	CATHODE f	ANODE f	CATHODE PLUS	ANODE PLUS				
3	CATHODEg	ANODE g	CATHODE MINUS	ANODE MINUS				
4	CATHODE e	ANODE e	NC	NC				
5	CATHODE d	ANODE d	NC	NC				
6	ANODE ^[1]	CATHODE ^[2]	ANODE ^[1]	CATHODE ^[2]				
7	CATHODE DP	ANODE DP	CATHODE DP	ANODE DP				
8	CATHODE c	ANODE c	CATHODE c	ANODE c				
9	CATHODE b	ANODE b	CATHODE b	ANODE b				
10	CATHODE a	ANODE a	NC	NC				

NOTES: 1. REDUNDANT ANODES 2. REDUNDANT CATHODES

Absolute Maximum Ratings

Description	AlGaAs Red HDSP-F15x/F16x Series	HER/Orange HDSP-F20x/F40x Series	Yellow HDSP-F30x Series	Green HDSP-F50x Series	Units
Average Power per Segment or DP	96	105	80	105	mW
Peak Forward Current per Segment or DP	160[1]	90 ^[3]	60 ^[5]	90 ^[7]	mA
DC Forward Current per Segment or DP	40 ^[2]	30 ^[4]	20 ^[6]	30 ^[8]	mA
Operating Temperature Range	-20 to +100 ^[9]		-40 to +100		°C
Storage Temperature Range	-55 to +100				
Reverse Voltage per Segment or DP (*reverse voltage is for LED testing pur- pose and not recommended to be used as application condition)		3.0)		V
Wavesoldering Temperature for 3 Sec- onds (1.59 mm [0.063 in.] below body)		250	0		°C

Notes:

1. See Figure 1 to establish pulsed conditions.

2. Derate above 46°C at 0.54 mA/°C.

3. See Figure 6 to establish pulsed conditions.

Derate above 53°C at 0.45 mA/°C.
 See Figure 7 to establish pulsed conditions.

6. Derate above 81°C at 0.52 mA/°C.

7. See Figure 8 to establish pulsed conditions. 8. Derate above 39°C at 0.37 mA/°C.

9. For operation below -20°C, contact your local Avago components sales office or an authorized distributor.

Electrical/Optical Characteristics at $T_{A} = 25^{\circ}C$

AlGaAs Red

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Luminous Intensity/Segment ^[1,2,5] (Digit Average)	I _v	7.5	15.0		mcd	I _F = 20 mA
Forward Voltage/Segment or DP	V _F		1.8	2.2	V	$I_{F} = 20 \text{ mA}$
Peak Wavelength	λ_{peak}		645		nm	
Dominant Wavelength ^[3]	λ		637		nm	
Reverse Voltage/Segment or DP ^[4]	V _R	3.0	15		V	I _R = 100 μA
Temperature Coefficient of V _F /Segment or DP	ΔV _F /°C		-2		mV/°C	
Thermal Resistance LED Junction-to-Pin	Rθ		320		°C/W/Seg	
	Luminous Intensity/Segment ^[1,2,5] (Digit Average) Forward Voltage/Segment or DP Peak Wavelength Dominant Wavelength ^[3] Reverse Voltage/Segment or DP ^[4] Temperature Coefficient of V _F /Segment or DP	Luminous Intensity/Segment ^[1,2,5] (Digit Average)IForward Voltage/Segment or DPVPeak Wavelength λ_{PEAK} Dominant Wavelength ^[3] λ_d Reverse Voltage/Segment or DP ^[4] VTemperature Coefficient of V _F /Segment or DP $\Delta V_F/^{\circ}C$	$\begin{tabular}{ c c c c c } Luminous Intensity/Segment $^{[1,2,5]}$ (Digit Average) I_V 7.5 \\ \hline Forward Voltage/Segment or DP V_F \\ \hline Peak Wavelength λ_{PEAK} \\ \hline Dominant Wavelength$^{[3]}$ λ_d \\ \hline Reverse Voltage/Segment or DP$^{[4]}$ V_R 3.0 \\ \hline Temperature Coefficient of V_F/Segment or DP ΔV_F/°C $ \end{tabular}$	Luminous Intensity/Segment ^[1,2,5] (Digit Average)I7.515.0Forward Voltage/Segment or DP V_F 1.8Peak Wavelength λ_{PEAK} 645Dominant Wavelength ^[3] λ_d 637Reverse Voltage/Segment or DP ^[4] V_R 3.015Temperature Coefficient of V_F /Segment or DP $\Delta V_F/^{\circ}C$ -2	Luminous Intensity/Segment ^[1,2,5] (Digit Average)I7.515.0Forward Voltage/Segment or DP V_F 1.82.2Peak Wavelength λ_{PEAK} 645Dominant Wavelength ^[3] λ_d 637Reverse Voltage/Segment or DP ^[4] V_R 3.015Temperature Coefficient of V_F /Segment or DP ΔV_F /°C-2	Luminous Intensity/SegmentImage of the second

High Efficiency Red

Device Series	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
HDSP-	Luminous Intensity/Segment ^[1,2] (Digit Average)	I _v	420	1200		μcd	$I_F = 5 \text{ mA}$
F20x	Forward Voltage/Segment or DP	V _F		2.0	2.5	V	I _F = 20 mA
	Peak Wavelength	λ_{peak}		635		nm	
	Dominant Wavelength ^[3]	λ_{d}		626		nm	
	Reverse Voltage/Segment or DP ^[4]	V _R	3.0	30		V	I _R = 100 μA
	Temperature Coefficient of V _F /Segment or DP	ΔV _F /°C		-2		mV/°C	
	Thermal Resistance LED Junction-to-Pin	$R\theta_{J-PIN}$		320		°C/W/Seg	

Electrical/Optical Characteristics at $T_A = 25^{\circ}C$, continued

Orange

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Luminous Intensity/Segment ^[1,2] (Digit Average)	I _v	420	1200		μcd	$I_F = 5 \text{ mA}$
Forward Voltage/Segment or DP	V _F		2.0	2.5	V	$I_{F} = 20 \text{ mA}$
Peak Wavelength	I _{PEAK}		600		nm	
Dominant Wavelength ^[3]	l _d		603		nm	
Reverse Voltage/Segment or DP ^[4]	V _R	3.0	30		V	I _R = 100 μA
Temperature Coefficient of V _F /Segment or DP	ΔV _F /°C		-2		mV/°C	
Thermal Resistance LED Junction-to-Pin	RI\q _{J-PIN}		320		°C/W/Seg	
	Luminous Intensity/Segment ^[1,2] (Digit Average) Forward Voltage/Segment or DP Peak Wavelength Dominant Wavelength ^[3] Reverse Voltage/Segment or DP ^[4] Temperature Coefficient of V _F /Segment or DP	Luminous Intensity/Segment ^[1,2] (Digit Average)IForward Voltage/Segment or DPVPeak WavelengthIDominant Wavelength ^[3] IReverse Voltage/Segment or DP ^[4] VTemperature Coefficient of V _F /Segment or DP ΔV_F° C	$\begin{tabular}{ c c c c } Luminous Intensity/Segment $^{[1,2]}$ (Digit Average) I_V 420 \\ \hline Forward Voltage/Segment or DP V_F \\ \hline Peak Wavelength I_PEAK \\ \hline Dominant Wavelength $^{[3]}$ I_d \\ \hline Reverse Voltage/Segment or DP $^{[4]}$ V_R 3.0 \\ \hline Temperature Coefficient of V_F/Segment or DP ΔV_F/°C $ \end{tabular}$	Luminous Intensity/SegmentIIForward Voltage/Segment or DP V_F 2.0Peak Wavelength I_{PEAK} 600Dominant Wavelength ^[3] I_d 603Reverse Voltage/Segment or DP ^[4] V_R 3.0Temperature Coefficient of V_F /Segment or DP ΔV_F /°C-2	Luminous Intensity/Segment ^[1,2] (Digit Average)I4201200Forward Voltage/Segment or DP V_F 2.02.5Peak Wavelength I_{PEAK} 600Dominant Wavelength ^[3] I603Reverse Voltage/Segment or DP ^[4] V_R 3.0Temperature Coefficient of V_F /Segment or DP ΔV_F /°C-2	Luminous Intensity/Segment ^[1,2] (Digit Average)I4201200 μ cdForward Voltage/Segment or DP V_F 2.02.5VPeak Wavelength I_{PEAK} 600nmDominant Wavelength ^[3] I603nmReverse Voltage/Segment or DP ^[4] V_R 3.030VTemperature Coefficient of V_F /Segment or DP ΔV_F /°C-2mV/°C

Yellow

Device Series	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
HDSP-	Luminous Intensity/Segment ^[1,2] (Digit Average)	I _v	290	800		μcd	$I_F = 5 \text{ mA}$
F30x	Forward Voltage/Segment or DP	V _F		2.2	2.5	V	$I_{F} = 20 \text{ mA}$
	Peak Wavelength	λ_{peak}		583		nm	
	Dominant Wavelength ^[3,6]	λ_{d}	581.5	586	592.5	nm	
	Reverse Voltage/Segment or DP ^[4]	V _R	3.0	40		V	I _R = 100 μA
	Temperature Coefficient of V _F /Segment or DP	ΔV _F /°C		-2		mV/°C	
	Thermal Resistance LED Junction-to-Pin	$R\theta_{J-PIN}$		320		°C/W/Seg	

High Performance Green

Device Series	Parameter	Svmbol	Min.	Typ.	Max.	Units	Test Conditions
HDSP-	Luminous Intensity/Segment ^[1,2] (Digit Average)	I _v	1030	3500	Mux.	μcd	$I_{\rm F} = 10 \rm{mA}$
F50x	Forward Voltage/Segment or DP	V _F		2.1	2.5	V	$I_{F} = 10 \text{ mA}$
	Peak Wavelength	λ_{peak}		566		nm	
	Dominant Wavelength ^[3,6]	λ _d		571	577	nm	
	Reverse Voltage/Segment or DP ^[4]	V _R	3.0	50		V	I _R = 100 μA
	Temperature Coefficient of V _F /Segment or DP	ΔV _F /°C		-2		mV/°C	
	Thermal Resistance LED Junction-to-Pin	$R\theta_{J-PIN}$		320		°C/W/Seg	

Notes:

1. Case temperature of device immediately prior to the intensity measurement is 25°C.

2. The digits are categorized for luminous intensity. The intensity category is designated by a letter on the side of the package.

3. The dominant wavelength, $\lambda_{d'}$ is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device.

4. Typical specification for reference only. Do not exceed absolute maximum ratings.

5. For low current operation, the AlGaAs HDSP-F10X series displays are recommended. They are tested at 1 mA

dc/segment and are pin for pin compatible with the HDSP-F15X/F16x series.

6. The Yellow (HDSP-F30X) series and Green (HDSP-F50X) series displays are categorized for dominant wavelength. The category is designated by a number adjacent to the luminous intensity category letter.

AlGaAs Red

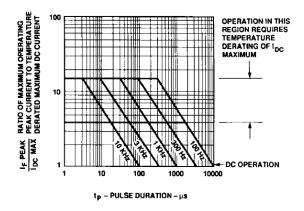


Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration – AlGaAs Red.

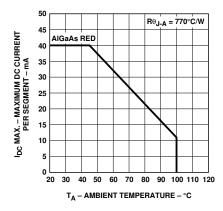


Figure 2. Maximum Allowable DC Current vs. Ambient Temperature.

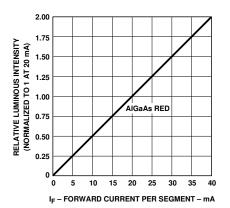


Figure 4. Relative Luminous Intensity vs. DC Forward Current.

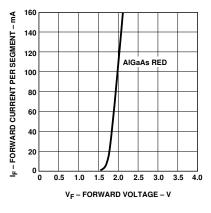


Figure 3. Forward Current vs. Forward Voltage.

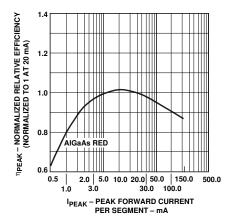


Figure 5. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

HER, Orange, Yellow, Green

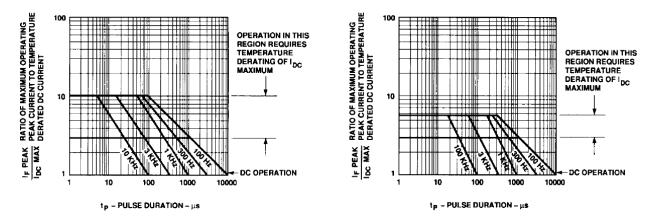


Figure 6. Maximum Tolerable Peak Current vs. Pulse Duration – HER, Orange.

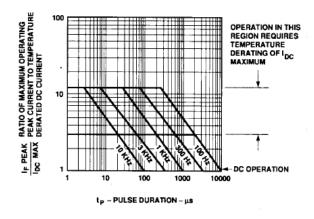


Figure 8. Maximum Tolerable Peak Current vs. Pulse Duration – Green.

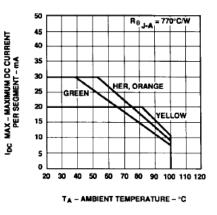
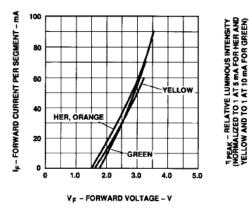
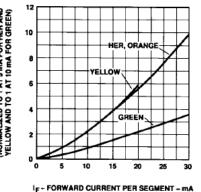




Figure 9. Maximum Allowable DC Current vs. Ambient Temperature.

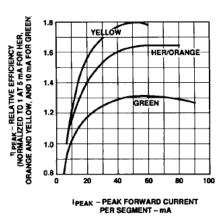


Figure 10. Forward Current vs. Forward Voltage Characteristics.

Figure 11. Relative Luminous Intensity vs. DC Forward Current.

Figure 12. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Intensity Bin Limits (mcd)

AlGaAs Red	HDSP-F15x/F16x			
IV Bin Category	Min.	Max.		
L	8.67	15.90		
Μ	13.00	23.80		
Ν	19.50	35.80		
0	29.30	53.60		
Р	43.90	80.50		

HER/Orange	HDSP-F20x/F40x	
IV Bin Category	Min.	Max.
С	0.485	0.890
D	0.728	1.333
E	1.091	2.000
F	1.636	3.000
G	2.454	4.500
Н	3.682	6.751

Yellow	HDSP-F30x	
IV Bin Category	Min.	Max.
С	0.297	0.543
D	0.445	0.817
E	0.669	1.225
F	1.003	1.838
G	1.504	2.758
Н	2.256	4.137

Green	HDSP-F50x	
IV Bin Category	Min.	Max.
Н	1.54	2.82
I	2.31	4.23
J	3.46	6.34
К	5.18	9.50
L	7.78	14.26

Color Categories

	Bin	Dominant Wavelength (nm)	
Color		Min.	Max.
Yellow	1	581.50	585.00
	3	584.00	587.50
	2	586.50	590.00
	4	589.00	592.50
Green	2	573.00	577.00
	3	570.00	574.00
	4	567.00	571.00
	5	564.00	568.00

Note:

All categories are established for classification of products. Products may not be available in all categories. Please contact your local Avago representatives for further clarification/information.

Contrast Enhancement

For information on contrast enhancement, please see Application Note 1015.

Soldering/Cleaning

Cleaning agents from the ketone family (acetone, methyl ethyl ketone, etc.) and from the chlorinated hydrocarbon family (methylene chloride, trichloro- ethylene, carbon tetrachloride, etc.) are not recommended for cleaning LED parts. All of these various solvents attack or dissolve the encapsulating epoxies used to form the package of plastic LED parts.

For further information on soldering LEDs, please refer to Application Note 1027.

For product information and a complete list of distributors, please go to our web site:

www.avagotech.com

Avago Technologies and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2015-2016 Avago Technologies. All rights reserved. Obsoletes 5989-2346EN AV02-2556EN - January 8, 2016

