mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

INTEGRATED CIRCUITS

HEF4027B flip-flops

DESCRIPTION

The HEF4027B is a dual JK flip-flop which is edge-triggered and features independent set direct (S_D) , clear direct (C_D) , clock (CP) inputs and outputs (O,\overline{O}) . Data is accepted when CP is LOW, and transferred to the output on the positive-going edge of the clock. The active HIGH asynchronous clear-direct (C_D) and set-direct (S_D) are independent and override the J, K, and CP inputs. The outputs are buffered for best system performance. Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

FUNCTION TABLES

	I	NPUTS	OUTPUTS			
SD	CD	СР	J	к	0	ō
Н	L	Х	Х	Х	Н	L
L	н	Х	Х	X	L	Н
Н	н	Х	Х	X	Н	Н

	I	NPUTS	OUTPUTS				
SD	CD	СР	J	к	0 _{n + 1}	\overline{O}_{n+1}	
L	L	7	L	L	no change		
L	L	7	н	L	Н	L	
L	L	7	L	Н	L	Н	
L	L	5	н	Н	\overline{O}_n	On	

Notes

- H = HIGH state (the more positive voltage)
 L = LOW state (the less positive voltage)
 - X = state is immaterial
 - \checkmark = positive-going transition
 - O_{n+1} = state after clock positive transition

PINNING

- J,K synchronous inputs
- CP clock input (L to H edge-triggered)
- S_D asynchronous set-direct input (active HIGH)
- C_D asynchronous clear-direct input (active HIGH)
- O true output
- O complement output

HEF4027BP(N):	16-lead DIL; plastic (SOT38-1)
HEF4027BD(F):	16-lead DIL; ceramic (cerdip) (SOT74)
HEF4027BT(D):	16-lead SO; plastic (SOT109-1)

(): Package Designator North America

FAMILY DATA, I_{DD} LIMITS category FLIP-FLOPS

See Family Specifications

HEF4027B flip-flops

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
$CP \rightarrow O, \overline{O}$	5			105	210	ns	78 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		40	80	ns	29 ns + (0,23 ns/pF) C _L
	15			30	60	ns	22 ns + (0,16 ns/pF) C _L
	5			85	170	ns	58 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		35	70	ns	27 ns + (0,23 ns/pF) C _L
	15			30	60	ns	22 ns + (0,16 ns/pF) C _L
$S_D \rightarrow O$	5			70	140	ns	43 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		30	60	ns	19 ns + (0,23 ns/pF) C _L
	15			25	50	ns	17 ns + (0,16 ns/pF) C _L
$C_D \rightarrow O$	5			120	240	ns	93 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		45	90	ns	33 ns + (0,23 ns/pF) C _L
	15			35	70	ns	27 ns + (0,16 ns/pF) C _L
$S_D \to \overline{O}$	5			140	280	ns	113 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		55	110	ns	44 ns + (0,23 ns/pF) C _L
	15			40	80	ns	32 ns + (0,16 ns/pF) C _L

HEF4027B flip-flops

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA	
$C_D \rightarrow \overline{O}$	5			75	150	ns	48 ns + (0,55 ns/pF) C _L	
LOW to HIGH	10	t _{PLH}		35	70	ns	24 ns + (0,23 ns/pF) C _L	
	15			25	50	ns	17 ns + (0,16 ns/pF) C _L	
Output transition times	5			60	120	ns	10 ns + (1,0 ns/pF) C _L	
HIGH to LOW	10	t _{THL}		30	60	ns	9 ns + (0,42 ns/pF) C _L	
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L	
	5			60	120	ns	10 ns + (1,0 ns/pF) C _L	
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns + (0,42 ns/pF) C _L	
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L	
Set-up time	5		50	25		ns		
$J,K\toCP$	10	t _{su}	30	10		ns		
	15		20	5		ns		
Hold time	5		25	0		ns		
$J,K\toCP$	10	t _{hold}	20	0		ns		
	15		15	5		ns		
Minimum clock	5		80	40		ns		
pulse width; LOW	10	t _{WCPL}	30	15		ns	See also waveforms Figs 4 and 5	
	15		24	12		ns		
Minimum S _D , C _D	5		90	45		ns		
pulse width; HIGH	10	TWSDH,	40	20		ns		
	15	WCDH	30	15		ns		
Recovery time	5		20	-15		ns		
for S _D , C _D	10	t _{RSD,}	15	-10		ns		
	15	RCD	10	-5		ns		
Maximum clock	5		4	8		MHz		
pulse frequency	10	f _{max}	12	25		MHz	see also waveforms	
J = K = HIGH	15		15	30		MHz		

	V _{DD} V	TYPICAL FORMULA FOR P (μ W)	
Dynamic power	5	900 f _i + Σ (f _o C _L) × V _{DD} ²	where
dissipation per	10	4 500 f _i + Σ (f _o C _L) \times V _{DD} ²	f _i = input freq. (MHz)
package (P)	15	13 200 f _i + Σ (f _o C _L) \times V _{DD} ²	f _o = output freq. (MHz)
			C_L = load capacitance (pF)
			$\Sigma (f_0 C_L) = sum of outputs$
			V _{DD} = supply voltage (V)

HEF4027B flip-flops

APPLICATION INFORMATION

Some examples of applications for the HEF4027B are:

- Registers
- Counters
- Control circuits

January 1995