: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4027B
 flip-flops
 Dual JK flip-flop

Product specification
File under Integrated Circuits, IC04

PHILIPS

DESCRIPTION

The HEF4027B is a dual JK flip-flop which is edge-triggered and features independent set direct $\left(\mathrm{S}_{\mathrm{D}}\right)$, clear direct $\left(\mathrm{C}_{\mathrm{D}}\right)$, clock (CP) inputs and outputs (O, $\overline{\mathrm{O}}$). Data is accepted when CP is LOW, and transferred to the output on the positive-going edge of the clock. The active HIGH asynchronous clear-direct (C_{D}) and set-direct $\left(\mathrm{S}_{\mathrm{D}}\right)$ are independent and override the J, K, and CP inputs. The outputs are buffered for best system performance.
Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

Fig. 1 Functional diagram.

Fig. 2 Pinning diagram.

FUNCTION TABLES

INPUTS					OUTPUTS		
$\mathbf{S}_{\boldsymbol{D}}$	$\mathbf{C}_{\boldsymbol{D}}$	$\mathbf{C P}$	\mathbf{J}	\mathbf{K}	\mathbf{O}	$\overline{\mathbf{O}}$	
H	L	X	X	X	H	L	
L	H	X	X	X	L	H	
H	H	X	X	X	H	H	

INPUTS					OUTPUTS	
$\mathbf{S}_{\mathbf{D}}$	$\mathbf{C}_{\mathbf{D}}$	$\mathbf{C P}$	\mathbf{J}	\mathbf{K}	$\mathbf{O}_{\mathbf{n}+\mathbf{1}}$	$\overline{\mathbf{O}}_{\mathbf{n}+\mathbf{1}}$
L	L	\digamma	L	L	no change	
L	L	\digamma	H	L	H	L
L	L	\digamma	L	H	L	H
L	L	\digamma	H	H	$\overline{\mathrm{O}}_{\mathrm{n}}$	O_{n}

Notes

1. $\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)

L = LOW state (the less positive voltage)
$\mathrm{X}=$ state is immaterial
$\Gamma=$ positive-going transition
$\mathrm{O}_{\mathrm{n}+1}=$ state after clock positive transition

PINNING

J,K synchronous inputs
CP clock input (L to H edge-triggered)
$S_{D} \quad$ asynchronous set-direct input (active HIGH)
C_{D} asynchronous clear-direct input (active HIGH)
O true output
$\overline{\mathrm{O}}$ complement output

HEF4027BP(N): 16-lead DIL; plastic (SOT38-1)
HEF4027BD(F): 16-lead DIL; ceramic (cerdip) (SOT74)
HEF4027BT(D): 16-lead SO; plastic (SOT109-1)
(): Package Designator North America

FAMILY DATA, IDD LIMITS category FLIP-FLOPS
See Family Specifications

Fig. 3 Logic diagram (one flip-flop).

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	V_{DD} V	SYMBOL	MIN. TYP.	MAX.	TYPICAL EXTRAPOLATION FORMULA
Propagation delays $\mathrm{CP} \rightarrow \mathrm{O}, \overline{\mathrm{O}}$ HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 105 \\ 40 \\ 30 \end{array}$	210 ns 80 ns 60 ns	$\begin{aligned} & 78 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 29 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 22 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PLH }}$	85 35 30	$\begin{array}{r} 170 \mathrm{~ns} \\ 70 \mathrm{~ns} \\ 60 \mathrm{~ns} \end{array}$	$\begin{aligned} & 58 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 27 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 22 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\mathrm{S}_{\mathrm{D}} \rightarrow \mathrm{O}$ LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PLH }}$	70 30 25	$\begin{array}{r} 140 \mathrm{~ns} \\ 60 \mathrm{~ns} \\ 50 \mathrm{~ns} \end{array}$	$\begin{aligned} & 43 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 19 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 17 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$C_{D} \rightarrow 0$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 120 \\ 45 \\ 35 \\ \hline \end{array}$	240 ns 90 ns 70 ns	$\begin{aligned} & 93 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 33 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 27 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\mathrm{S}_{\mathrm{D}} \rightarrow \overline{\mathrm{O}}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} \hline 140 \\ 55 \\ 40 \end{array}$	$\begin{array}{r} \hline 280 \mathrm{~ns} \\ 110 \mathrm{~ns} \\ 80 \mathrm{~ns} \end{array}$	$\begin{array}{r} \hline 113 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 44 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 32 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{array}$

Dual JK flip-flop

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	SYMBOL	MIN.	TYP.	MAX.	TYPICAL EXTRAPOLATION FORMULA
$\mathrm{C}_{\mathrm{D}} \rightarrow \overline{\mathrm{O}}$ LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLH }}$		$\begin{aligned} & 75 \\ & 35 \\ & 25 \end{aligned}$	$\begin{array}{r} 150 \mathrm{~ns} \\ 70 \mathrm{~ns} \\ 50 \mathrm{~ns} \end{array}$	$\begin{aligned} & 48 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 24 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 17 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
Output transition times HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {THL }}$		$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	120 ns 60 ns 40 ns	$\begin{array}{r} 10 \mathrm{~ns}+(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns}+(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns}+(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{array}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {TLH }}$		$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	120 ns 60 ns 40 ns	$\begin{array}{r} 10 \mathrm{~ns}+(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns}+(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns}+(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{array}$
Set-up time $\mathrm{J}, \mathrm{~K} \rightarrow \mathrm{CP}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {su }}$	$\begin{aligned} & 50 \\ & 30 \\ & 20 \end{aligned}$	$\begin{array}{r} 25 \\ 10 \\ 5 \end{array}$	ns ns ns	see also waveforms Figs 4 and 5
Hold time $\mathrm{J}, \mathrm{~K} \rightarrow \mathrm{CP}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	thold	$\begin{aligned} & 25 \\ & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 5 \end{aligned}$	ns ns ns	
Minimum clock pulse width; LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {WCPL }}$	$\begin{aligned} & \hline 80 \\ & 30 \\ & 24 \end{aligned}$	$\begin{aligned} & 40 \\ & 15 \\ & 12 \end{aligned}$	ns ns ns	
Minimum S_{D}, C_{D} pulse width; HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {WSDH, }}$ $t_{\text {WCDH }}$	$\begin{aligned} & 90 \\ & 40 \\ & 30 \end{aligned}$	$\begin{aligned} & 45 \\ & 20 \\ & 15 \end{aligned}$	ns ns ns	
Recovery time for S_{D}, C_{D}	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\mathrm{RSD}}$, $t_{R C D}$	$\begin{aligned} & 20 \\ & 15 \\ & 10 \end{aligned}$	$\begin{array}{r} \hline-15 \\ -10 \\ -5 \\ \hline \end{array}$	ns ns ns	
Maximum clock pulse frequency $\mathrm{J}=\mathrm{K}=\mathrm{HIGH}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{f}_{\text {max }}$	$\begin{array}{r} 4 \\ 12 \\ 15 \end{array}$	$\begin{array}{r} 8 \\ 25 \\ 30 \end{array}$	$\begin{aligned} & \hline \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	see also waveforms Fig. 4

	V_{DD} V	TYPICAL FORMULA FOR P ($\mu \mathrm{W}$)	
Dynamic power dissipation per package (P)	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\begin{array}{r} 900 f_{i}+\sum\left(f_{o} C_{L}\right) \times V_{D D^{2}} \\ 4500 f_{i}+\sum\left(f_{o} C_{L}\right) \times V_{D D^{2}} \\ 13200 f_{i}+\sum\left(f_{o} C_{L}\right) \times V_{D D^{2}} \end{array}$	where $\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz) $\mathrm{f}_{\mathrm{o}}=$ output freq. (MHz) C_{L} = load capacitance (pF) $\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs $\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)

Dual JK flip-flop

Fig. 4 Waveforms showing set-up times, hold times and minimum clock pulse width. Set-up and hold times are shown as positive values but may be specified as negative values.

Fig. 5 Waveforms showing recovery times for S_{D} and C_{D}; minimum S_{D} and C_{D} pulse widths.

APPLICATION INFORMATION

Some examples of applications for the HEF4027B are:

- Registers
- Counters
- Control circuits

