imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ne<mark>x</mark>peria

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

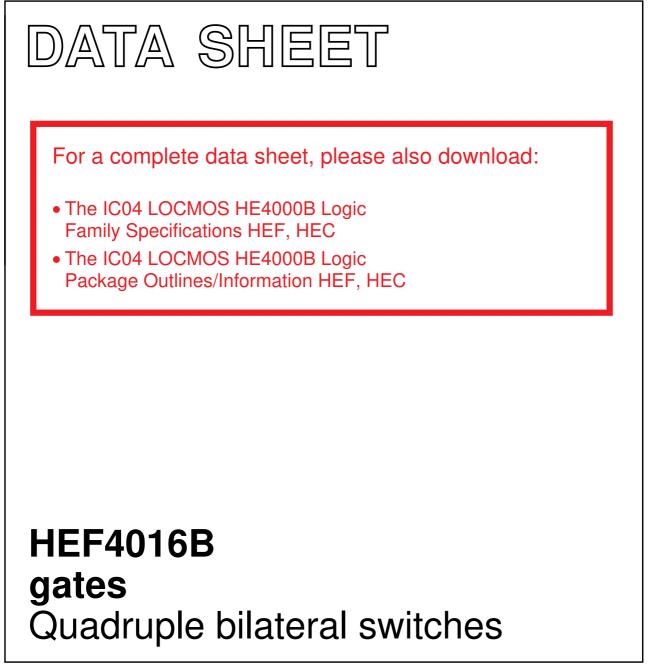
Instead of <u>http://www.nxp.com</u>, <u>http://www.philips.com/</u> or <u>http://www.semiconductors.philips.com/</u>, use <u>http://www.nexperia.com</u>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use **salesaddresses@nexperia.com** (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:


- © Nexperia B.V. (year). All rights reserved.

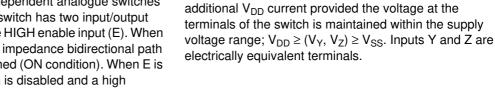
If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

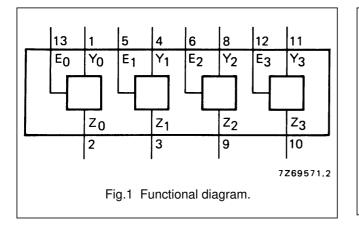
Kind regards,

Team Nexperia

INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC04 January 1995

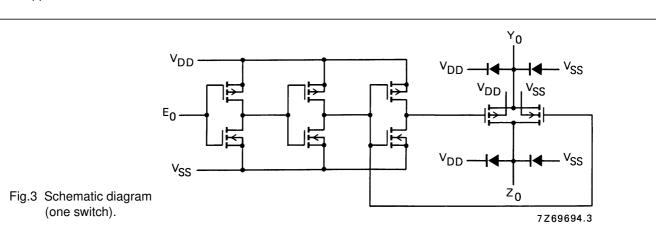



HEF4016B gates

Quadruple bilateral switches

DESCRIPTION

The HEF4016B has four independent analogue switches (transmission gates). Each switch has two input/output terminals (Y/Z) and an active HIGH enable input (E). When E is connected to V_{DD} a low impedance bidirectional path between Y and Z is established (ON condition). When E is connected to V_{SS} the switch is disabled and a high


PINNING

E ₀ to E ₃	enable inputs
Y_0 to Y_3	input/output terminals
Z_0 to Z_3	input/output terminals

APPLICATION INFORMATION

Some examples of applications for the HEF4016B are:

- Signal gating
- Modulation
- Demodulation
- Chopper

$V_{DD} = E_0 = E_3 + Y_3 + Z_3 + Z_2 + Y_2$ D = HEF4016B $Y_0 = Z_0 + Z_1 + Y_1 + E_1 + E_2 + V_{SS}$

Fig.2 Pinning diagram.

4

2 3

impedance between Y and Z is established (OFF

condition). Current through a switch will not cause

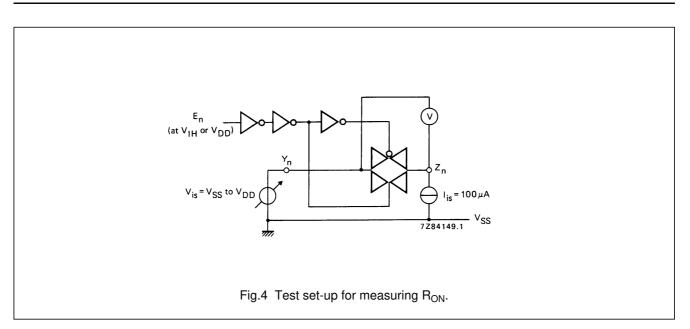
HEF4016BP(N): 14-lead DIL; plastic (SOT27-1)
HEF4016BD(F): 14-lead DIL; ceramic (cerdip) (SOT73)
HEF4016BT(D): 14-lead SO; plastic (SOT108-1)
(): Package Designator North America

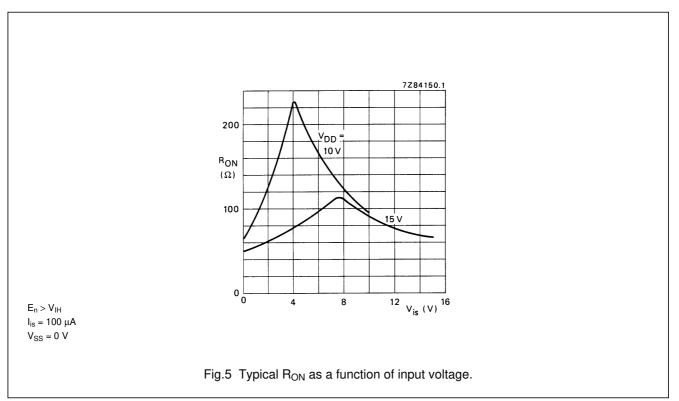
RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 1	34)		
Power dissipation per switch	Р	max.	100
For other RATINGS see Family Specifications			

DC CHARACTERISTICS

 T_{amb} = 25 °C; V_{SS} = 0 V (unless otherwise specified)


PARAMETER	V _{DD} V	SYMBOL	TYP.	MAX.	UNIT	CONDITIONS
	5		8000	_	Ω	E_n at V _{IH} ; V _{is} = 0 to V _{DD} ; see Fig.4
ON resistance	10	R _{ON}	230	690	Ω	
	15		115	350	Ω	
	5		140	425	Ω	E_n at V_{IH} ; $V_{is} = V_{SS}$; see Fig.4
ON resistance	10	R _{ON}	65	195	Ω	
	15		50	145	Ω	
	5		170	515	Ω	E_n at V_{IH} ; $V_{is} = V_{DD}$; see Fig.4
ON resistance	10	R _{ON}	95	285	Ω	
	15		75	220	Ω	
'Δ' ON resistance	5		200	_	Ω	E_n at V_{IH} ; $V_{is} = 0$ to V_{DD} ; see Fig.4
between any two	10	ΔR_{ON}	15	_	Ω	
channels	15		10	—	Ω	


	V _{DD}				T _{amb}	(°C)				
PARAMETER	V	SYMBOL	_	40	+	25	+	85	UNIT	CONDITION
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Quiescent	5		-	1,0	_	1,0	_	7,5	μA	V _{SS} = 0; all valid
device	10	I _{DD}	-	2,0	_	2,0	_	15,0	μA	input combinations;
current	15		_	4,0	_	4,0	_	30,0	μA	$V_I = V_{SS} \text{ or } V_{DD}$
Input leakage	15	±1	_	_	_	300	_	1000	nA	E at V ar V
current at E _n	15	± I _{IN}							IIA	E_n at V_{SS} or V_{DD}
OFF-state leakage	5		_	_	_	_	_	_	nA	E _n at V _{IL} ;
current, any	10	I _{OZ}	-	_	_	_	_	_	nA	$V_{is} = V_{SS} \text{ or } V_{DD};$
channel OFF	15		_	_	_	200	_	_	nA	$V_{os} = V_{DD} \text{ or } V_{SS}$
E _n input	5		_	1,5	_	1,5	_	1,5	V	switch OFF; see
voltage LOW	10	V _{IL}	-	3,0	_	3,0	_	3,0	V	Fig.9 for I _{OZ}
	15		-	4,0	_	4,0	_	4,0	V	
E _n input	5		3,5	_	3,5	_	3,5	_	V	low-impedance
voltage HIGH	10	V _{IH}	7,0	_	7,0	_	7,0	_	v	between Y and Z (ON
	15		11,0	-	11,0	-	11,0	-	V	condition) see R _{ON} switch

HEF4016B gates

mW

HEF4016B gates

HEF4016B gates

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	TYP.	MAX.		
Propagation delays						
$V_{is} \to V_{os}$	5		25	50	ns	
HIGH to LOW	10	t _{PHL}	10	20	ns	note 1
	15		5	10	ns	
	5		20	40	ns	
LOW to HIGH	10	t _{PLH}	10	20	ns	note 1
	15		5	10	ns	
Output disable times						
$E_n \to V_{os}$	5		90	130	ns	
HIGH	10	t _{PHZ}	80	110	ns	note 2
	15		75	100	ns	
	5		85	120	ns	
LOW	10	t _{PLZ}	75	100	ns	note 2
	15		75	100	ns	
Output enable times						
$E_n \to V_{os}$	5		40	80	ns	
HIGH	10	t _{PZH}	20	40	ns	note 2
	15		15	30	ns	
	5		40	80	ns	
LOW	10	t _{PZL}	20	40	ns	note 2
	15		15	30	ns	
Distortion, sine-wave	5		-		%	
response	10		0,08		%	note 3
	15		0,04		%	
Crosstalk between	5		_		MHz	
any two channels	10		1		MHz	note 4
	15		_		MHz	
Crosstalk; enable	5		_		mV	
input to output	10		50		mV	note 5
	15		-		mV	
OFF-state	5		_		MHz	
feed-through	10		1		MHz	note 6
	15		-		MHz	
ON-state frequency	5		-		MHz	
response	10		90		MHz	note 7
	15		_		MHz	

HEF4016B gates

Notes

 $V_{is}\xspace$ is the input voltage at a Y or Z terminal, whichever is assigned as input.

 V_{os} is the output voltage at a Y or Z terminal, whichever is assigned as output.

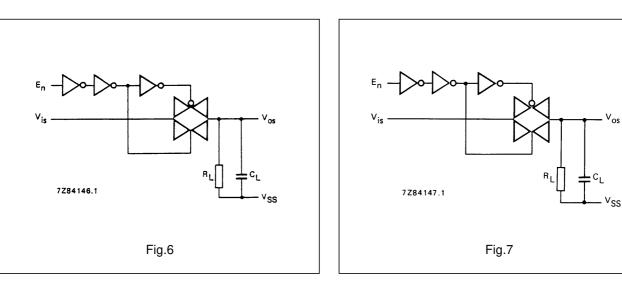
- 1. $R_L = 10 \text{ k}\Omega$ to V_{SS} ; $C_L = 50 \text{ pF}$ to V_{SS} ; $E_n = V_{DD}$; $V_{is} = V_{DD}$ (square-wave); see Figs 6 and 10.
- $\begin{array}{ll} \text{2.} & R_L = 10 \ \text{k}\Omega; \ \text{C}_L = 50 \ \text{pF} \ \text{to} \ \text{V}_{SS}; \ \text{E}_n = \text{V}_{DD} \ (\text{square-wave}); \\ & \text{V}_{is} = \text{V}_{DD} \ \text{and} \ R_L \ \text{to} \ \text{V}_{SS} \ \text{for} \ t_{\text{PHZ}} \ \text{and} \ t_{\text{PZH}}; \\ & \text{V}_{is} = \text{V}_{SS} \ \text{and} \ R_L \ \text{to} \ \text{V}_{DD} \ \text{for} \ t_{\text{PLZ}} \ \text{and} \ t_{\text{PZL}}; \ \text{see Figs 6 and 11.} \end{array}$
- 3. $R_L = 10 \text{ k}\Omega$; $C_L = 15 \text{ pF}$; $E_n = V_{DD}$; $V_{is} = \frac{1}{2}V_{DD(p-p)}$ (sine-wave, symmetrical about $\frac{1}{2}V_{DD}$); $f_{is} = 1 \text{ kHz}$; see Fig.7.
- 4. $R_L = 1 \ k\Omega; \ V_{is} = \frac{1}{2} V_{DD(p-p)}$ (sine-wave, symmetrical about $\frac{1}{2} V_{DD}$);

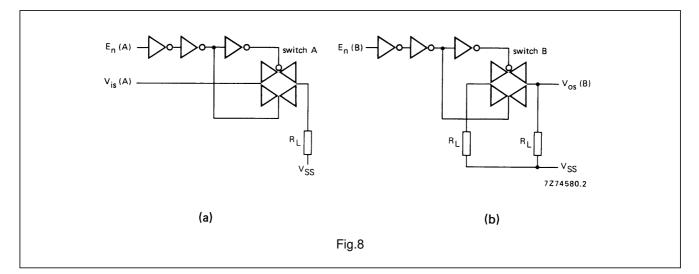
20 log
$$\frac{V_{os}(B)}{V_{is}(A)}$$
 = -50 dB; $E_n(A)$ = V_{SS} ; $E_n(B) = V_{DD}$; see Fig. 8.

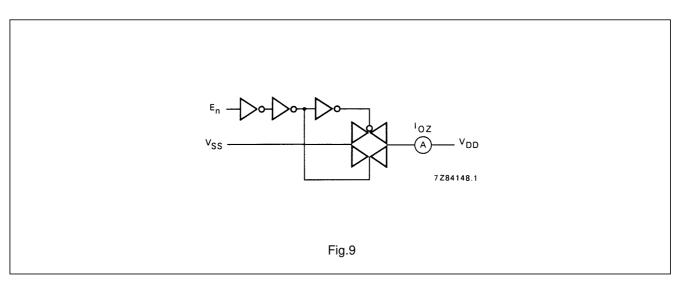
- 5. $R_L = 10 \text{ k}\Omega$ to V_{SS} ; $C_L = 15 \text{ pF}$ to V_{SS} ; $E_n = V_{DD}$ (square-wave); crosstalk is $|V_{os}|$ (peak value); see Fig.6.
- 6. $R_L = 1 \ k\Omega; C_L = 5 \ pF; E_n = V_{SS}; V_{is} = \frac{1}{2} V_{DD(p-p)}$ (sine-wave, symmetrical about $\frac{1}{2} V_{DD}$);

20 log $\frac{V_{os}}{V_{is}} =$ –50 dB; see Fig. 7.

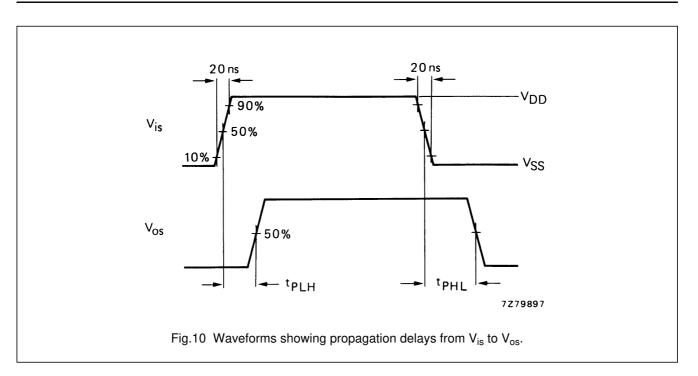
7. $R_L = 1 \ k\Omega; C_L = 5 \ pF; E_n = V_{DD}; V_{is} = \frac{1}{2} V_{DD(p-p)}$ (sine-wave, symmetrical about $\frac{1}{2} V_{DD}$);


20 log
$$\frac{V_{os}}{V_{is}}$$
= -3 dB; see Fig. 7.


	V _{DD} V	TYPICAL FORMULA FOR P (μ W)	
Dynamic power	5	550 f _i + Σ (f _o C _L) × V _{DD} ²	where
dissipation per	10	$2~600~f_i + \Sigma~(f_o C_L) \times V_{DD}{}^2$	$f_i = input freq. (MHz)$
package (P) ⁽¹⁾	15	$6 \; 500 \; f_i + \Sigma \; (f_o C_L) \times V_{DD}{}^2$	$f_o = output freq. (MHz)$
			C_L = load capacitance (pF)
			$\sum (f_o C_L) = sum of outputs$
			V _{DD} = supply voltage (V)


Note

1. All enable inputs switching.


HEF4016B gates

HEF4016B gates

