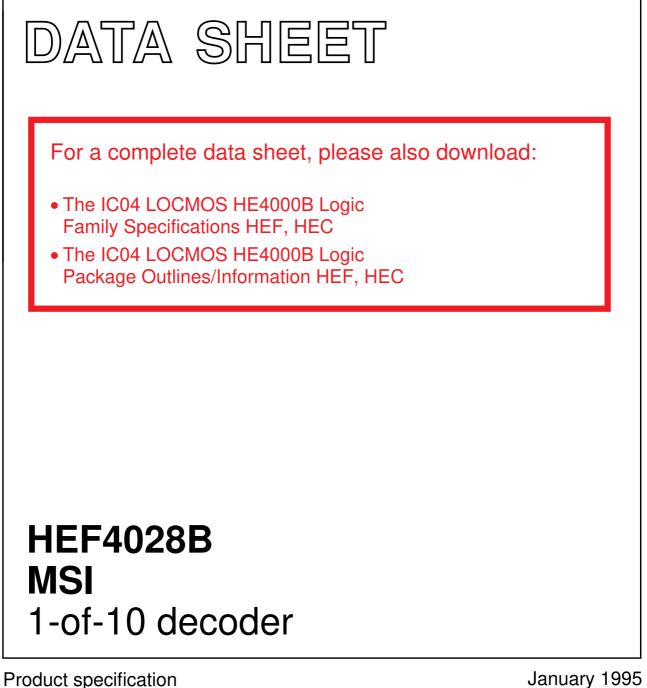
imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

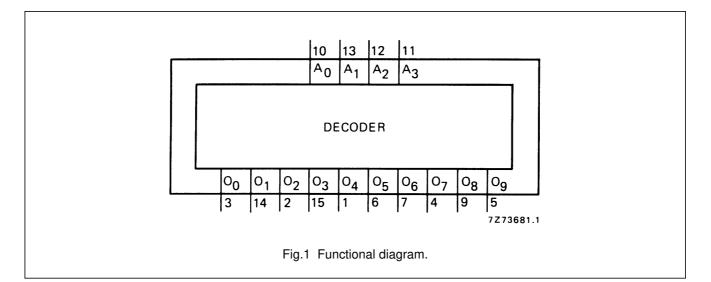


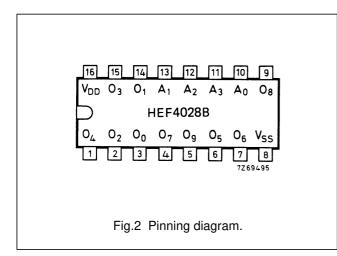
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

INTEGRATED CIRCUITS

File under Integrated Circuits, IC04


January 1995

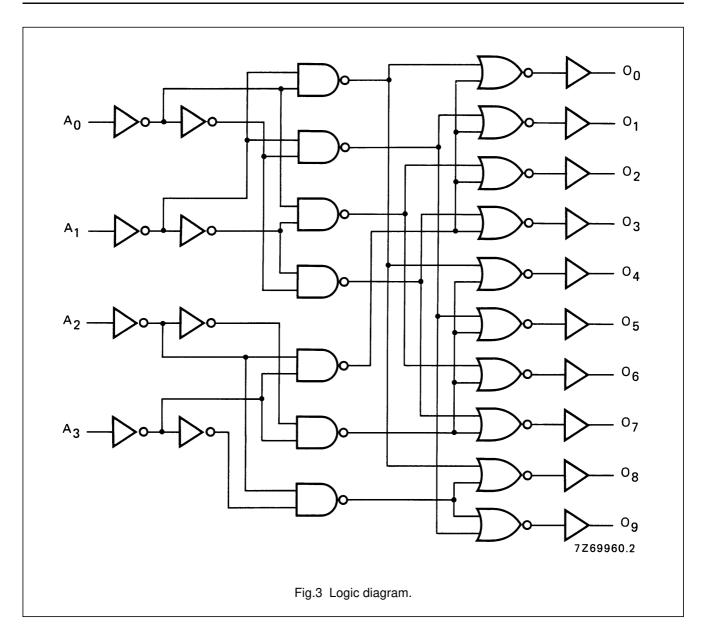


HEF4028B MSI

DESCRIPTION

The HEF4028B is a 4-bit BCD to 1-of-10 active HIGH decoder. A 1-2-4-8 BCD code applied to inputs A_0 to A_3 causes the selected output to be HIGH, the other nine will be LOW. If desired, the device may be used as a 1-of-8 decoder with enable; 3-bit octal inputs are applied to inputs A_0 , A_1 and A_2 selecting an output O_0 to O_7 . Input A_3 then becomes an active LOW enable, forcing the selected output LOW when A_3 is HIGH. The HEF4028B may also be used as an 8-output (O_0 to O_7) demultiplexer with A_0 to A_2 as address inputs and A_3 as an active LOW data input. The outputs are fully buffered for best performance.

HEF4028BP(N):	16-lead DIL; plastic					
	(SOT38-1)					
HEF4028BD(F):	16-lead DIL; ceramic (cerdip)					
	(SOT74)					
HEF4028BT(D):	16-lead SO; plastic					
	(SOT109-1)					
(): Package Designator North America						


PINNING

A ₀ to A ₃	address inputs, 1-2-4-8 BCD
O_0 to O_9	outputs (active HIGH)

FAMILY DATA, I_{DD} LIMITS category MSI

See Family Specifications

HEF4028B MSI

HEF4028B MSI

TRUTH TABLE

INPUTS			OUTPUTS											
A ₃	A ₂	A ₁	A ₀	O ₀	O ₁	O ₂	O ₃	O ₄	O ₅	O ₆	O ₇	O 8	O 9	
L	L	L	L	Н	L	L	L	L	L	L	L	L	L	
L	L	L	Н	L	Н	L	L	L	L	L	L	L	L	
L	L	Н	L	L	L	Н	L	L	L	L	L	L	L	
L	L	н	н	L	L	L	Н	L	L	L	L	L	L	
L	н	L	L	L	L	L	L	Н	L	L	L	L	L	
L	н	L	н	L	L	L	L	L	Н	L	L	L	L	
L	н	н	L	L	L	L	L	L	L	Н	L	L	L	
L	н	н	н	L	L	L	L	L	L	L	Н	L	L	
н	L	L	L	L	L	L	L	L	L	L	L	Н	L	
н	L	L	Н	L	L	L	L	L	L	L	L	L	Н	
Н	L	Н	L	L	L	L	L	L	L	L	L	L	L	
н	L	н	н	L	L	L	L	L	L	L	L	L	L	
н	н	L	L	L	L	L	L	L	L	L	L	L	L	(2)
н	Н	L	Н	L	L	L	L	L	L	L	L	L	L	(~)
н	Н	Н	L	L	L	L	L	L	L	L	L	L	L	
Н	Н	Н	Н	L	L	L	L	L	L	L	L	L	L	

Notes

1. H = HIGH state (the more positive voltage) L = LOW state (the less positive voltage)

2. Extraordinary states.

HEF4028B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays						
$A_n \to O_n$	5		100	200	ns	73 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	40	80	ns	29 ns + (0,23 ns/pF) C _L
	15		30	60	ns	22 ns + (0,16 ns/pF) C _L
	5		90	180	ns	63 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	40	80	ns	29 ns + (0,23 ns/pF) C _L
	15		30	60	ns	22 ns + (0,16 ns/pF) C _L
Output transition times	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L
	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L

	V _{DD} V	TYPICAL FORMULA FOR P (μ W)	
Dynamic power	5	350 f _i + Σ (f _o CL) $ imes$ V _{DD} ²	where
dissipation per	10	2 200 f_i + Σ (f_oCL) \times V_{DD} 2	$f_i = input freq. (MHz)$
package (P)	15	7 350 f_i + Σ (f_oCL) \times V_DD 2	f _o = output freq. (MHz)
			C_L = total load cap. (pF)
			$\sum (f_o C_L) = sum of outputs$
			V _{DD} = supply voltage (V)