

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF40373B MSI

Octal transparent latch with 3-state outputs

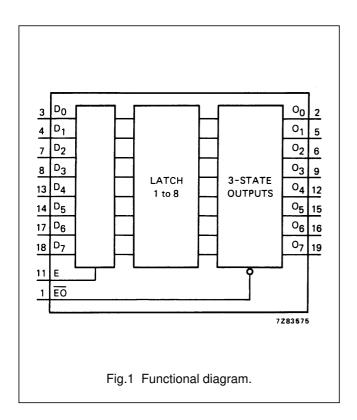
Product specification
File under Integrated Circuits, IC04

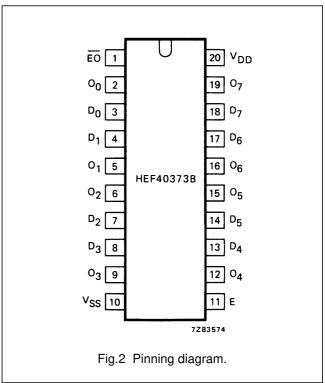
January 1995

Octal transparent latch with 3-state outputs

HEF40373B MSI

DESCRIPTION


The HEF40373B is an 8-bit transparent latch with 3-state buffered outputs. The output stages have high current output capability suitable for driving highly capacitive loads. The latch outputs follow the data inputs when the latch enable (E) is HIGH. When E is LOW, the data that meets the set-up times is latched. The 3-state outputs are controlled by the output enable input $\overline{\text{EO}}$. A HIGH on


EO causes the outputs to assume a high impedance OFF-state. The device features hysteresis on the E input to improve noise rejection.

Schmitt-trigger action in the E input makes the circuit highly tolerant to slower input rise and fall times.

The HEF40373B is pin and functionally compatible with the TTL '373' device.

Supply voltage range: 3 to 15 V.

HEF40373BP(N): 20-lead DIL; plastic

(SOT146-1)

HEF40373BD(F): 20-lead DIL; ceramic (cerdip)

(SOT152)

HEF40373BT(D): 20-lead SO; plastic

(SOT163-1)

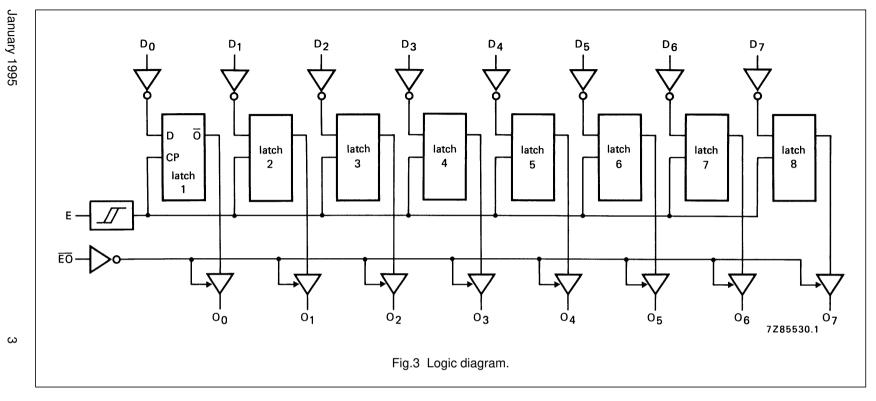
(): Package Designator North America

PINNING

 D_0 to D_7 data inputs

E latch enable input

EO output enable input (active LOW)


O₀ to O₇ 3-state buffered outputs

FAMILY DATA, IDD LIMITS category MSI

See Family Specifications

Product specification

HEF40373B NSI

Philips Semiconductors Product specification

Octal transparent latch with 3-state outputs

HEF40373B MSI

FUNCTION TABLE

OPERATING MODES		INPUTS		INTERNAL	OUTPUTS O ₀ TO O ₇	
OPERATING MODES	ΕO	E	D _n	REGISTER		
anable 8 road register	L	Н	L	L	L	
enable & read register	L	Н	Н	Н	н	
latab ⁹ road register	L	L	1	L	L	
latch & read register	L	L	h	Н	н	
latab vaniatav 9 diaabla autouta	Н	L	1	L	Z	
latch register & disable outputs	Н	L	h	Н	Z	

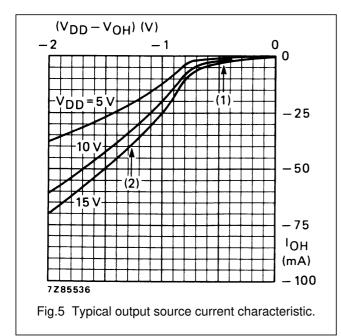
Notes

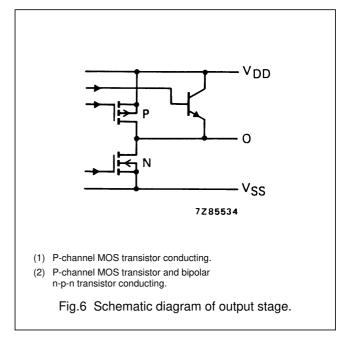
- 1. H = HIGH state (the more positive voltage)
 - h = HIGH state (one set-up time prior to the HIGH-to-LOW enable transition)
 - L = LOW state (the less positive voltage)
 - I = LOW state (one set-up time prior to the HIGH-to-LOw enable transition)
 - Z = high impedance OFF-state

Octal transparent latch with 3-state outputs

HEF40373B MSI

RATINGS


Limiting values in accordance with the Absolute Maximum System (IEC 134) See Family Specifications, except for:


D.C. current into any input	$\pm I_1$	max.	10 mA
D.C. source or sink current into any output	$\pm I_{O}$	max.	25 mA
D.C. current into the supply terminals	±Ι	max.	100 mA

DC CHARACTERISTICS

 $V_{SS} = 0 V$

	V _{DD}	V _{OH}	V _{OL} SYMBOL		T _{amb} (°C)						
	V	V	V	STIMBUL	-40		+ 25		+ 85		
					MIN.	TYP.	MIN.	TYP.	MIN.	TYP.	
Output current	5	4,6			0,75		0,6	1,2	0,45		mA
HIGH	10	9,5		-I _{OH}	1,85		1,5	3,0	1,1		mA
	15	13,5			14,5		15	50	15,5		mA
Output current	5	3,6			9,3		10	24	10,7		mA
HIGH	10	8,4		-I _{OH}	14,4		15	46	15,0		mA
	15	13,2			19,5		20	62	19,8		mA
Output current	5		0,4		2,9		2,3	5,4	1,75		mA
LOW	10		0,5	I _{OL}	9,5		7,6	17	5,50		mA
	15		1,5		30,0		25	45	19,0		mA
Hysteresis	5							220			mV
voltage at	10			V _H				250			mV
enable input (E)	15							320			mV

Philips Semiconductors Product specification

Octal transparent latch with 3-state outputs

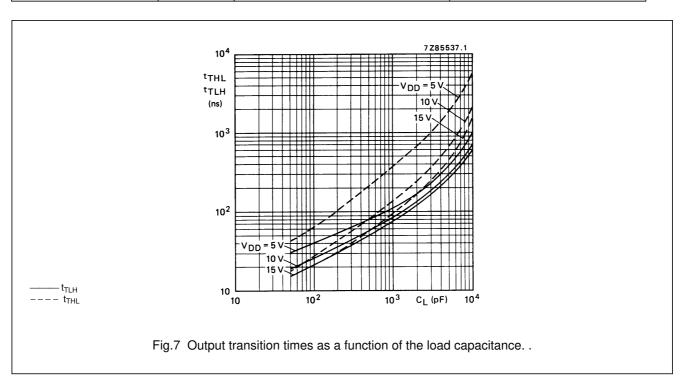
HEF40373B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
$E \rightarrow O_n$	5			150	300	ns	138 ns + (0,24 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		60	120	ns	59 ns + (0,01 ns/pF) C _L
	15			40	80	ns	36 ns + (0,07 ns/pF) C _L
$E \rightarrow O_n$	5			125	250	ns	122 ns + (0,06 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		50	100	ns	48 ns + (0,03 ns/pF) C _L
	15			40	80	ns	39 ns + (0,02 ns/pF) C _L
Output transition	5			40	80	ns	
times	10	t _{THL}		20	40	ns	
HIGH to LOW	15			15	30	ns	
	5			30	60	ns	see Fig.7
LOW to HIGH	10	t _{TLH}		20	40	ns	
	15			15	30	ns	
3-state propagation delays							
Output disable times							
$\overline{EO} o O_n$	5			65	130	ns	
HIGH	10	t _{PHZ}		30	60	ns	
	15			25	50	ns	
	5			75	150	ns	
LOW	10	t _{PLZ}		40	80	ns	
	15			30	60	ns	
Output enable times							
$\overline{EO} \to O_n$	5			65	130	ns	
HIGH	10	t _{PZH}		30	60	ns	
	15			25	50	ns	
	5			85	170	ns	
LOW	10	t _{PZL}		35	70	ns	
	15			25	50	ns	
Set-up time	5		15	7		ns	
$D_n \to E$	10	t _{su}	10	5		ns	
	15		10	5		ns	
Hold time	5		25	15		ns	
$D_n \rightarrow E$	10	t _{hold}	15	4		ns	
	15		10	3		ns	
Minimum latch enable	5		60	30		ns	
pulse width LOW	10	t _{WEL}	30	15		ns	
	15		20	10		ns	

Philips Semiconductors Product specification


Octal transparent latch with 3-state outputs

HEF40373B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD} V	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	$3\ 325\ f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	14 200 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	$37 \ 425 \ f_i + \sum (f_o C_L) \times V_{DD}^2$	fo = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_o C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

