: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF40374B MSI
 Octal D-type flip-flop with 3-state outputs

File under Integrated Circuits, IC04

PHILIPS

DESCRIPTION

The HEF40374B is an octal D-type flip-flop with 3-state buffered outputs with a common clock input (CP). The device is used primarily as an 8-bit positive edge-triggered storage register for interfacing with a 3 -state bus. Data on the D-inputs is transferred to storage during the LOW-to-HIGH transition of the clock (CP) input. The 3 -state output buffers are controlled by an active LOW output enable input ($\overline{\mathrm{EO}}$). A HIGH on $\overline{\mathrm{EO}}$ forces the eight outputs to a high impedance OFF-state. When $\overline{\mathrm{EO}}$ is LOW, the data in the register appears at the outputs.

Fig. 1 Functional diagram.

HEF40374BD(F): 20-lead DIL; ceramic (cerdip) (SOT152)
HEF40374BT(D): 20-lead SO; plastic (SOT163-1)
(): Package Designator North America

The output stages have high current output capability suitable for driving highly capacitive loads.
The device features hysteresis on the CP input to improve noise rejection.
Schmitt-trigger action in the E input makes the circuit highly tolerant to slower input rise and fall times.
The HEF40374B is pin and functionally compatible with the TTL ‘374' device.
Supply voltage range: 3 to 15 V .

Fig. 2 Pinning diagram.

PINNING

D_{0} to D_{7}
CP clock input
$\overline{\mathrm{EO}} \quad$ output enable input (active LOW)
O_{0} to $\mathrm{O}_{7} \quad 3$-state buffered outputs

FAMILY DATA, IDD LIMITS category MSI
See Family Specifications

FUNCTION TABLE

OPERATING MODES	INPUTS			INTERNAL REGISTER	OUTPUTS$\mathrm{O}_{0} \mathrm{TO} \mathrm{O}_{7}$
	$\overline{\text { EO }}$	CP	D_{n}		
load \& read register	L	Γ	I	L	L
	L	Γ	h	H	H
load register \& disable outputs	H	Γ	1	L	Z
	H	Γ	h	H	Z

Notes

1. $\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
$\mathrm{h}=\mathrm{HIGH}$ state (one set-up time prior to the LOW-to-HIGH clock transition)
L = LOW state (the less positive voltage)
I = LOW state (one set-up time prior to the LOW-to-HIGH clock transition)
Z = high impedance OFF-state
$\digamma=$ LOW-to-HIGH clock transition

Octal D-type flip-flop with 3-state outputs

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
See Family Specifications, except for:
D.C. current into any input
D.C. source or sink current into any output

$\pm I_{1}$	max.	10 mA
$\pm I_{0}$	max.	25 mA
$\pm I$	max.	100 mA

DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Fig. 4 Typical output source current characteristic.

(1) P-channel MOS transistor conducting.
(2) P-channel MOS transistor and bipolar $\mathrm{n}-\mathrm{p}-\mathrm{n}$ transistor conducting.

Fig. 5 Schematic diagram of output stage.

Octal D-type flip-flop with 3-state outputs

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	$\mathbf{V}_{\text {DD }}$	SYMBOL	MIN.	TYP.	MAX.	
V			TYPICAL EXTRAPOLATION FORMULA			
Minimum clock	5		50	25	ns	
pulse width; LOW	10	$\mathrm{t}_{\mathrm{WCPL}}$	25	12	ns	
Maximum clock	15		20	10	ns	
pulse frequency	5		25	5	MHz	
	10	$\mathrm{f}_{\text {max }}$	6	12	MHz	
	15		8	17	MHz	

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; input transition times $\leq 20 \mathrm{~ns}$

	$\mathbf{V}_{\mathbf{D D}}$	TYPICAL FORMULA FOR P $(\mu \mathrm{W})$	
Dynamic power	5	$3775 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{C}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	where
dissipation per	10	$15700 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{C}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz)
package (P)	15	$40575 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{o}}=$ output freq. (MHz)
		$\mathrm{C}_{\mathrm{L}}=$ load capacitance (pF)	
			$\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs
		$\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)	

