imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC04 January 1995

HEF40374B MSI

DESCRIPTION

The HEF40374B is an octal D-type flip-flop with 3-state buffered outputs with a common clock input (CP). The device is used primarily as an 8-bit positive edge-triggered storage register for interfacing with a 3-state bus. Data on the D-inputs is transferred to storage during the LOW-to-HIGH transition of the clock (CP) input. The 3-state output buffers are controlled by an active LOW output enable input (\overline{EO}). A HIGH on \overline{EO} forces the eight outputs to a high impedance OFF-state. When \overline{EO} is LOW, the data in the register appears at the outputs. The output stages have high current output capability suitable for driving highly capacitive loads.

The device features hysteresis on the CP input to improve noise rejection.

Schmitt-trigger action in the E input makes the circuit highly tolerant to slower input rise and fall times.

The HEF40374B is pin and functionally compatible with the TTL '374' device.

Supply voltage range: 3 to 15 V.

HEF40374BP(N): 20-lea	ad DIL; plastic (SOT146-1)
-----------------------	----------------------------

HEF40374BD(F): 20-lead DIL; ceramic (cerdip) (SOT152)

- HEF40374BT(D): 20-lead SO; plastic (SOT163-1)
- (): Package Designator North America

PINNING

nputs
input
t enable input (active LOW)
e buffered outputs

FAMILY DATA, I_{DD} LIMITS category MSI

See Family Specifications

_

Product specification

Octal D-type flip-flop with 3-state outputs

HEF40374B MSI

FUNCTION TABLE

OPERATING MODES		INPUTS		INTERNAL	OUTPUTS	
OPERATING MODES	EO	СР	D _n	REGISTER	O ₀ TO O ₇	
load & road register	L	5	I	L	L	
load & read register	L	<u> </u>	h	Н	Н	
	Н	7	I	L	Z	
load register & disable outputs	Н	_ر	h	Н	Z	

Notes

1. H = HIGH state (the more positive voltage)

h = HIGH state (one set-up time prior to the LOW-to-HIGH clock transition)

L = LOW state (the less positive voltage)

I = LOW state (one set-up time prior to the LOW-to-HIGH clock transition)

Z = high impedance OFF-state

 \checkmark = LOW-to-HIGH clock transition

HEF40374B MSI

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134) See Family Specifications, except for:					
D.C. current into any input	$\pm I_{I}$	max.	10 mA		
D.C. source or sink current into any output	$\pm I_{O}$	max.	25 mA		
D.C. current into the supply terminals	±Ι	max.	100 mA		

DC CHARACTERISTICS

 $V_{\rm SS}=0~V$

	V _{DD}	V _{OH}	V _{OL}	SYMBOL				T _{amb} (°	C)		
	v	v	V	STMBOL	_4	10	+	25	+ 8	85	
					MIN.	TYP.	MIN.	TYP.	MIN.	TYP.	
Output current	5	4,6			0,75		0,6	1,2	0,45		mA
HIGH	10	9,5		–I _{OH}	1,85		1,5	3,0	1,1		mA
	15	13,5			14,5		15	50	15,5		mA
Output current	5	3,6			9,3		10	24	10,7		mA
HIGH	10	8,4		–I _{OH}	14,4		15	46	15,0		mA
	15	13,2			19,5		20	62	19,8		mA
Output current	5		0,4		2,9		2,3	5,4	1,75		mA
LOW	10		0,5	I _{OL}	9,5		7,6	17	5,50		mA
	15		1,5		30,0		25	45	19,0		mA
Hysteresis	5							220			mV
voltage at	10			V _H				250			mV
clock input (CP)	15							320			mV

Fig.5 Schematic diagram of output stage.

HEF40374B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
$CP \rightarrow O_n$	5			125	250	ns	113 ns + (0,24 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		55	110	ns	54 ns + (0,01 ns/pF) C _L
	15			40	80	ns	36 ns + (0,07 ns/pF) C _L
$CP \rightarrow O_n$	5			125	250	ns	122 ns + (0,06 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		55	110	ns	53 ns + (0,03 ns/pF) C _L
	15			40	80	ns	39 ns + (0,02 ns/pF) C _L
Output transition	5			40	80	ns	
times	10	t _{THL}		20	40	ns	
HIGH to LOW	15			15	30	ns	see Fig.6
	5			30	60	ns	See Fig.o
LOW to HIGH	10	t _{TLH}		20	40	ns	
	15			15	30	ns	
3-state propagation delays Output disable times							
$\overline{\text{EO}} \rightarrow \text{O}_n$	5			60	120	ns	
HIGH	10	t _{PHZ}		30	60	ns	
	15			24	48	ns	
	5			70	140	ns	
LOW	10	t _{PLZ}		35	70	ns	
	15			30	60	ns	
Output enable times							
$\overline{EO}\toO_n$	5			65	130	ns	
HIGH	10	t _{PZH}		30	60	ns	
	15			24	48	ns	
	5			85	170	ns	
LOW	10	t _{PZL}		35	70	ns	
	15			25	50	ns	
Set-up time	5		20	0		ns	
$D_n \rightarrow CP$	10	t _{su}	20	2		ns	
	15		20	5		ns	
Hold time	5		20	10		ns	
$D_n \rightarrow CP$	10	t _{hold}	15	2		ns	
	15		10	0		ns	

HEF40374B MSI

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.	TYPICAL EXTRAPOLATION FORMULA
Minimum clock	5		50	25	ns	
pulse width; LOW	10	t _{WCPL}	25	12	ns	
	15		20	10	ns	
Maximum clock	5		25	5	MHz	
pulse frequency	10	f _{max}	6	12	MHz	
	15		8	17	MHz	

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD} V	TYPICAL FORMULA FOR P (μ W)	
Dynamic power	5	$3~775~f_i + \Sigma~(f_o C_L) \times V_{DD}^2$	where
dissipation per	10	15 700 f _i + Σ (f _o C _L) × V _{DD} ²	f _i = input freq. (MHz)
package (P)	15	40 575 f _i + Σ (f _o C _L) × V _{DD} ²	$f_o = output freq. (MHz)$
			C _L = load capacitance (pF)
			$\Sigma (f_o C_L) = sum of outputs$
			V _{DD} = supply voltage (V)

