: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Important notice

Dear Customer,
On 7 February 2017 the former NXP Standard Product business became a new company with the tradename Nexperia. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.philips.com/ or http://www.semiconductors.philips.com/, use http://www.nexperia.com

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved
Should be replaced with:
- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via salesaddresses@nexperia.com). Thank you for your cooperation and understanding,

Kind regards,
Team Nexperia

HEF4094B-Q100

8-stage shift-and-store register

Rev. 3 - 4 July 2013
Product data sheet

1. General description

The HEF4094B-Q100 is an 8 -stage serial shift register. It has a storage latch associated with each stage for strobing data from the serial input to parallel buffered 3 -state outputs QP0 to QP7. The parallel outputs may be connected directly to common bus lines. Data is shifted on positive-going clock transitions. The data in each shift register stage is transferred to the storage register when the strobe (STR) input is HIGH. Data in the storage register appears at the outputs whenever the output enable (OE) signal is HIGH.

Two serial outputs (QS1 and QS2) are available for cascading a number of HEF4094B-Q100 devices. Serial data is available at QS1 on positive-going clock edges to allow high-speed operation in cascaded systems with a fast clock rise time. The same serial data is available at QS2 on the next negative going clock edge. This is used for cascading HEF4094B-Q100 devices when the clock has a slow rise time.

It operates over a recommended V_{DD} power supply range of 3 V to 15 V referenced to V_{SS} (usually ground). Connect unused inputs to $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$, or another input.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

2. Features and benefits

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
- Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Fully static operation
- $5 \mathrm{~V}, 10 \mathrm{~V}$, and 15 V parametric ratings
- Standardized symmetrical output characteristics
- ESD protection:
- MIL-STD-833, method 3015 exceeds 2000 V
- HBM JESD22-A114F exceeds 2000 V
- MM JESD22-A115-A exceeds $200 \mathrm{~V}(\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0 \Omega)$
- Complies with JEDEC standard JESD 13-B

3. Ordering information

Table 1. Ordering information
All types operate from $-40{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Type number	Package		
	Name	Description	Version
HEF4094BT-Q100	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1
HEF4094BTT-Q100	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1

4. Functional diagram

Fig 1. Functional diagram

Fig 2. Logic symbol

Fig 3. Logic diagram

5. Pinning information

5.1 Pinning

Fig 4. Pin configuration SOT109-1

HEF4094B-Q100

Fig 5. Pin configuration SOT403-1

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
STR	1	strobe input
D	2	data input
CP	3	clock input
QP0 to QP7	$4,5,6,7,14,13,12,11$	parallel output
$V_{\text {SS }}$	8	ground supply voltage
QS1	9	serial output
QS2	10	serial output
OE	15	output enable input
$V_{\text {DD }}$	16	supply voltage

6. Functional description

Table 3. Function table[1]

Inpu				Para		Seria	
CP	OE	STR	D	QP0	QPn	QS1	QS2
\uparrow	L	X	X	Z	Z	Q6S	NC
\downarrow	L	X	X	Z	Z	NC	Q7S
\uparrow	H	L	X	NC	NC	Q6S	NC
\uparrow	H	H	L	L	QPn -1	Q6S	NC
\uparrow	H	H	H	H	QPn -1	Q6S	NC
\downarrow	H	H	H	NC	NC	NC	Q7S

[1] At the positive clock edge, the information in the 7th register stage is transferred to the 8th register stage and the QSn outputs.
$H=$ HIGH voltage level; L = LOW voltage level; $X=$ don't care;
$\uparrow=$ positive-going transition; $\downarrow=$ negative-going transition;
Z = HIGH-impedance OFF-state; NC = no change;
Q6S = the data in register stage 6 before the LOW to HIGH clock transition;
Q7S = the data in register stage 7 before the HIGH to LOW clock transition.

Fig 6. Timing diagram

7. Limiting values

Table 4. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to $V_{S S}=0 \mathrm{~V}$ (ground).

Symbol	Parameter	Conditions	Min	Max	Unit
$V_{D D}$	supply voltage		-0.5	+18	V
I_{K}	input clamping current	$\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$	-	± 10	mA
V_{1}	input voltage		-0.5	$V_{D D}+0.5$	V
$\mathrm{l}_{\text {OK }}$	output clamping current	$\mathrm{V}_{\mathrm{O}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$	-	± 10	mA
$\mathrm{I}_{\text {/O }}$	input/output current		-	± 10	mA
IDD	supply current		-	50	mA
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	ambient temperature		-40	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	total power dissipation		[1]	500	mW
P	power dissipation	per output	-	100	mW

[1] For SO16 package: $P_{\text {tot }}$ derates linearly with $8 \mathrm{~mW} / \mathrm{K}$ above $70^{\circ} \mathrm{C}$.
For TSSOP16 package: $\mathrm{P}_{\text {tot }}$ derates linearly with $5.5 \mathrm{~mW} / \mathrm{K}$ above $60^{\circ} \mathrm{C}$.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V_{DD}	supply voltage		3	-	15	V
$\mathrm{~V}_{1}$	input voltage		0	-	V_{DD}	V
$\mathrm{T}_{\mathrm{amb}}$	ambient temperature	in free air	-40	-	+125	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	input transition rise and fall rate	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-	-	3.75	$\mu \mathrm{~s} / \mathrm{V}$
		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$	-	-	0.5	$\mu \mathrm{~s} / \mathrm{V}$
		$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$	-	-	0.08	$\mu \mathrm{~s} / \mathrm{V}$

9. Static characteristics

Table 6. Static characteristics
$V_{S S}=0 V ; V_{I}=V_{S S}$ or $V_{D D}$; unless otherwise specified.

Symbol	Parameter	Conditions	V DD	$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{amb}}=+85^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{amb}}=+125^{\circ} \mathrm{C}$		
				Min	Max	Min	Max	Min	Max	Min	Max	
V_{IH}	HIGH-level input voltage	$\left\|\mathrm{l}_{\mathrm{O}}\right\|<1 \mu \mathrm{~A}$	5 V	3.5	-	3.5	-	3.5	-	3.5	-	V
			10 V	7.0	-	7.0	-	7.0	-	7.0	-	V
			15 V	11.0	-	11.0	-	11.0	-	11.0	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\left\|\mathrm{l}_{\mathrm{O}}\right\|<1 \mu \mathrm{~A}$	5 V	-	1.5	-	1.5	-	1.5	-	1.5	V
			10 V	-	3.0	-	3.0	-	3.0	-	3.0	V
			15 V	-	4.0	-	4.0	-	4.0	-	4.0	V
V_{OH}	HIGH-level output voltage	$\mid \mathrm{l} \mathrm{O}^{\prime}<1 \mu \mathrm{~A}$	5 V	4.95	-	4.95	-	4.95	-	4.95	-	V
			10 V	9.95	-	9.95	-	9.95	-	9.95	-	V
			15 V	14.95	-	14.95	-	14.95	-	14.95	-	V
V_{OL}	LOW-level output voltage	$\left\|\mathrm{l}_{\mathrm{O}}\right\|<1 \mu \mathrm{~A}$	5 V	-	0.05	-	0.05	-	0.05	-	0.05	V
			10 V	-	0.05	-	0.05	-	0.05	-	0.05	V
			15 V	-	0.05	-	0.05	-	0.05	-	0.05	V
l_{OH}	HIGH-level output current	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	5 V	-	-1.7	-	-1.4	-	-1.1	-	-1.1	mA
		$\mathrm{V}_{\mathrm{O}}=4.6 \mathrm{~V}$	5 V	-	-0.64	-	-0.5	-	-0.36	-	-0.36	mA
		$\mathrm{V}_{\mathrm{O}}=9.5 \mathrm{~V}$	10 V	-	-1.6	-	-1.3	-	-0.9	-	-0.9	mA
		$\mathrm{V}_{\mathrm{O}}=13.5 \mathrm{~V}$	15 V	-	-4.2	-	-3.4	-	-2.4	-	-2.4	mA
loL	LOW-level output current	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$	5 V	0.64	-	0.5	-	0.36	-	0.36	-	mA
		$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$	10 V	1.6	-	1.3	-	0.9	-	0.9	-	mA
		$\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{~V}$	15 V	4.2	-	3.4	-	2.4	-	2.4	-	mA
l_{OZ}	OFF-state output current	QPn output is HIGH; $\mathrm{V}_{\mathrm{O}}=15 \mathrm{~V}$	15 V	-	0.4	-	0.4	-	12	-	12	$\mu \mathrm{A}$
1	input leakage current		15 V	-	± 0.1	-	± 0.1	-	± 1.0	-	± 1.0	$\mu \mathrm{A}$
IDD	supply current	all valid input combinations; $\mathrm{I}_{\mathrm{O}}=0 \mathrm{~A}$	5 V	-	5	-	5	-	150	-	150	$\mu \mathrm{A}$
			10 V	-	10	-	10	-	300	-	300	$\mu \mathrm{A}$
			15 V	-	20	-	20	-	600	-	600	$\mu \mathrm{A}$
C_{1}	input capacitance			-	-	-	7.5	-	-	-	-	pF

10. Dynamic characteristics

Table 7. Dynamic characteristics
$V_{S S}=0 V ; T_{a m b}=25^{\circ} \mathrm{C}$; for test circuit see Figure 11; unless otherwise specified.

Symbol	Parameter	Conditions	$V_{\text {DD }}$		Extrapolation formula	Min	Typ	Max	Unit
$\mathrm{t}_{\text {PHL }}$	HIGH to LOW propagation delay	CP to QS1; see Figure 7	5 V	[1]	$108 \mathrm{~ns}+(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	135	270	ns
			10 V		$54 \mathrm{~ns}+(0.23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	65	130	ns
			15 V		$42 \mathrm{~ns}+(0.16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	50	100	ns
		$\begin{aligned} & \text { CP to QS2; } \\ & \text { see Figure } 7 \end{aligned}$	5 V		$78 \mathrm{~ns}+(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	105	210	ns
			10 V		$39 \mathrm{~ns}+(0.23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	50	100	ns
			15 V		$32 \mathrm{~ns}+(0.16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	40	80	ns
		CP to QPn; see Figure 7	5 V		$138 \mathrm{~ns}+(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	165	330	ns
			10 V		$64 \mathrm{~ns}+(0.23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	75	150	ns
			15 V		$47 \mathrm{~ns}+(0.16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	55	110	ns
		STR to QPn; see Figure 8	5 V		$83 \mathrm{~ns}+(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	110	220	ns
			10 V		$39 \mathrm{~ns}+(0.23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	50	100	ns
			15 V		$27 \mathrm{~ns}+(0.16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	35	70	ns
$\mathrm{t}_{\text {PLH }}$	LOW to HIGH propagation delay	$\begin{aligned} & \text { CP to QS1; } \\ & \text { see Figure } 7 \end{aligned}$	5 V	[1]	$78 \mathrm{~ns}+(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	105	210	ns
			10 V		$39 \mathrm{~ns}+(0.23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	50	100	ns
			15 V		$32 \mathrm{~ns}+(0.16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	40	80	ns
		CP to QS2; see Figure 7	5 V		$78 \mathrm{~ns}+(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	105	210	ns
			10 V		$39 \mathrm{~ns}+(0.23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	50	100	ns
			15 V		$32 \mathrm{~ns}+(0.16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	40	80	ns
		CP to QPn; see Figure 7	5 V		$123 \mathrm{~ns}+(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	150	300	ns
			10 V		$59 \mathrm{~ns}+(0.23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	70	140	ns
			15 V		$47 \mathrm{~ns}+(0.16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	55	110	ns
		STR to QPn; see Figure 8	5 V		$73 \mathrm{~ns}+(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	100	200	ns
			10 V		$34 \mathrm{~ns}+(0.23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	45	90	ns
			15 V		$27 \mathrm{~ns}+(0.16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	35	70	ns
t_{t}	transition time		5 V	[1]	$10 \mathrm{~ns}+(1.00 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	60	120	ns
			10 V		$9 \mathrm{~ns}+(0.42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	30	60	ns
			15 V		$6 \mathrm{~ns}+(0.28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	20	40	ns
$t_{\text {PZH }}$	OFF-state to HIGH propagation delay	OE to QPn; see Figure 9	5 V			-	40	80	ns
			10 V			-	25	50	ns
			15 V			-	20	40	ns
tpzL	OFF-state to LOW propagation delay	OE to QPn; see Figure 9	5 V			-	40	80	ns
			10 V			-	25	50	ns
			15 V			-	20	40	ns
$\mathrm{t}_{\text {PHZ }}$	HIGH to OFF-state propagation delay	OE to QPn; see Figure 9	5 V			-	75	150	ns
			10 V			-	40	80	ns
			15 V			-	30	60	ns

Table 7. Dynamic characteristics ...continued
$V_{S S}=0 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C}$; for test circuit see Figure 11; unless otherwise specified.

Symbol	Parameter	Conditions	VD	Extrapolation formula	Min	Typ	Max	Unit
tpLZ	LOW to OFF-state propagation delay	OE to QPn; see Figure 9	5 V		-	80	160	ns
			10 V		-	40	80	ns
			15 V		-	30	60	ns
$\mathrm{t}_{\text {su }}$	set-up time	D to CP; see Figure 10	5 V		60	30	-	ns
			10 V		20	10	-	ns
			15 V		15	5	-	ns
t_{n}	hold time	D to CP; see Figure 10	5 V		+5	-15	-	ns
			10 V		20	5	-	ns
			15 V		20	5	-	ns
$t_{\text {w }}$	pulse width	minimum LOW clock pulse; see Figure 7	5 V		60	30	-	ns
			10 V		30	15	-	ns
			15 V		24	12	-	ns
		minimum HIGH strobe pulse; see Figure 8	5 V		40	20	-	ns
			10 V		30	15	-	ns
			15 V		24	12	-	ns
$\mathrm{f}_{\text {max }}$	maximum frequency	see Figure 7	5 V		5	10	-	MHz
			10 V		11	22	-	MHz
			15 V		14	28	-	MHz

[1] The typical values of the propagation delay and transition times are calculated from the extrapolation formulas shown (C_{L} in pF$)$.

Table 8. Dynamic power dissipation
$V_{S S}=0 \mathrm{~V} ; t_{r}=t_{f} \leq 20 \mathrm{~ns} ; T_{a m b}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	$V_{D D}$	Typical formula for $P_{D}(\mu W)$	where:
P_{D}	dynamic power dissipation	5 V	$P_{D}=2100 \times f_{i}+\Sigma\left(f_{o} \times C_{L}\right) \times V_{D D^{2}}$	$f_{i}=$ input frequency in $M H z$,
		10 V	$P_{D}=9700 \times f_{i}+\Sigma\left(f_{o} \times C_{L}\right) \times V_{D D^{2}}$	$f_{o}=$ output frequency in $M H z$,
			$P_{D}=26000 \times f_{i}+\Sigma\left(f_{O} \times C_{L}\right) \times V_{D D^{2}}$	$C_{L}=$ output load capacitance in $p F$,
			$V_{D D}=$ supply voltage in V,	
		$\left.f_{O} \times C_{L}\right)=$ sum of the outputs.		

11. Waveforms

Measurement points are given in Table 9.
Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.
Fig 7. Clock to outputs propagation delays, and clock pulse width and maximum frequency

Table 9. Measurement points

Supply voltage	Input	Output		
\mathbf{V}_{DD}	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{X}}$	$\mathbf{V}_{\mathbf{Y}}$
5 V to 15 V	$0.5 \mathrm{~V}_{\mathrm{DD}}$	$0.5 \mathrm{~V}_{\mathrm{DD}}$	$0.1 \mathrm{~V}_{\mathrm{DD}}$	$0.9 \mathrm{~V}_{\mathrm{DD}}$

Measurement points are given in Table 9.
Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.
Fig 8. Strobe to output propagation delays, and strobe pulse width, set up and hold times

Measurement points are given in Table 9.
Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.
Fig 9. 3-state output enable and disable times for OE input

Measurement points are given in Table 9.
Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.
Fig 10. Data input data set up and hold times

a. Input waveform

b. Test circuit

Test data is given in Table 10
Definitions for test circuit:
DUT = Device Under Test.
$\mathrm{C}_{\mathrm{L}}=$ load capacitance including jig and probe capacitance.
$R_{L}=$ load resistance.
$R_{T}=$ termination resistance should be equal to the output impedance Z_{o} of the pulse generator.
Fig 11. Test circuit

Table 10. Test data

Supply voltage	Input			Load			
\mathbf{V}_{DD}	$\mathbf{V}_{\mathbf{I}}$	$\mathbf{t}_{\mathbf{r}}, \mathbf{t}_{\mathbf{f}}$	$\mathbf{t}_{\text {PHL }}, \mathbf{t}_{\text {PLH }}$	$\mathbf{t}_{\text {PHZ }}, \mathbf{t}_{\text {PZH }}$	$\mathbf{t}_{\text {PLZ }}, \mathbf{t}_{\text {PZL }}$	\mathbf{C}_{L}	\mathbf{R}_{L}
5 V to 15 V	$\mathrm{~V}_{\text {SS }}$ or V_{DD}	$\leq 20 \mathrm{~ns}$	open	V_{SS}	V_{DD}	50 pF	$1 \mathrm{k} \Omega$

12. Application information

Some examples of applications for the HEF4094B-Q100 are:

- Serial-to-parallel data conversion
- Remote control holding register

Fig 12. Remote control holding register

13. Package outline

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathrm{Z}^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{gathered} \hline 10.0 \\ 9.8 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$	8°
inches	0.069	$\begin{aligned} & 0.010 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0100 \\ 0.0075 \\ \hline \end{array}$	$\begin{aligned} & 0.39 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.05	$\begin{aligned} & 0.244 \\ & 0.228 \end{aligned}$	0.041	$\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.020 \end{aligned}$	0.01	0.01	0.004	$\begin{array}{\|l\|} \hline 0.028 \\ 0.012 \end{array}$	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT109-1	076E07	MS-012		\bigcirc	$\begin{aligned} & -99-12-27 \\ & 03-02-19 \end{aligned}$

Fig 13. Package outline SOT109-1 (SO16)
HEF4094B_Q100

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} $\mathbf{m a x}$.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(2)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(1)}$	$\boldsymbol{\theta}$
mm	1.1	0.15	0.95	0.25	0.30	0.2	5.1	4.5	0.6	6.6	1	0.75	0.4	0.2	0.13	0.1	0.40	8^{0}
	0.05	0.80	0.25	0.19	0.1	4.9	4.3	0.6	6.2	1	0.50	0.3	0.2	0.13	0.1	0°		

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			$-99-12-27$ $03-02-18$

Fig 14. Package outline SOT403-1 (TSSOP16)
HEF4094B_Q100

14. Abbreviations

Table 11. Abbreviations

Acronym	Description
HBM	Human Body Model
ESD	ElectroStatic Discharge
MM	Machine Model
MIL	Military

15. Revision history

Table 12. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes	
HEF4094B_Q100 v.3	20130704	Product data sheet	-	HEF4094B_Q100 v.2	
Modifications:	\bullet	Figure	corrected (errata).		
HEF4094B_Q100 v.2	20130606	Product data sheet	-	HEF4094B_Q100 v.1	
Modifications:	\bullet	added type	number HEF4094BTT-Q100.		
HEF4094B_Q100 v.1	20120807	Product data sheet	-	-	

16. Legal information

16.1 Data sheet status

Document status $\underline{[1][2]}$	Product status $[3]$	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term 'short data sheet' is explained in section "Definitions".
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com

16.2 Definitions

Draft - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet - A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.
Product specification - The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.
Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications - This NXP Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.
Terms and conditions of commercial sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control - This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations - A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
18. Contents
1 General description 1
2 Features and benefits 1
3 Ordering information 2
4 Functional diagram 2
5 Pinning information 3
5.1 Pinning 3
5.2 Pin description 4
6 Functional description 4
7 Limiting values 5
8 Recommended operating conditions. 5
9 Static characteristics. 6
10 Dynamic characteristics 7
11 Waveforms 9
12 Application information. 12
13 Package outline 13
14 Abbreviations. 15
15 Revision history 15
16 Legal information. 16
16.1 Data sheet status 16
16.2 Definitions 16
16.3 Disclaimers 16
16.4 Trademarks 17
17 Contact information 17
18 Contents 18

