

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Features

- · Ultrafast Recovery
- · Ultra soft Recovery
- Very Low I_{RRM}
- Very Low Q_{rr}
- · Specified at Operating Conditions
- Lead-Free

Benefits

- Reduced RFI and EMI
- · Reduced Power Loss in Diode and Switching Transistor
- · Higher Frequency Operation
- · Reduced Snubbing
- · Reduced Parts Count

Ultrafast, Soft Recovery Diode

$$\begin{split} V_R &= 600V \\ V_{F(TYP)}^* &= 1.3V \\ I_{F(AV)} &= 15A \\ Q_{rr}(typ.) &= 80nC \\ I_{RRM} \ (typ.) &= 4.0A \\ t_{rr} \ (typ.) &= 19ns \\ D_{I \ (rec)M/} dt \ (typ.) \ *= 160A/\mu s \end{split}$$

Description

International Rectifier's HFA15PB60 is a state of the art ultrafast recovery diode. Employing the latest in epitaxial construction and advanced processing techniques it features a superb combination of characteristics which result in performance which is unsurpassed by any rectifier previously available. With basic ratings of 600 volts and 15 amps continuous current, the HFA15PB60 is especially well suited for use as the companion diode for IGBTs and MOSFETs. In addition to ultra fast recovery time, the ultrafast recovery diode product line features extremely low values of peak recovery current (IRRM) and does not exhibit any tendency to "snap-off" during the tb portion of recovery. The ultrafast recovery diode features combine to offer designers a rectifier with lower noise and significantly lower switching losses in both the diode and the switching transistor. These ultrafast advantages can help to significantly reduce snubbing, component count and heat sink sizes. The HFA15PB60 is ideally suited for applications in power supplies and power conversion systems (such as inverters), motor drives, and many other similar applications where high speed, high efficiency is needed.

		Standard Pack			
Base part number	Package Type	Form	Quantity	Orderable Part Number	
HFA15PB60PbF	TO-247AC	Tube	25	HFA15PB60PbF	

Absolute Maximum Ratings

www.irf.com

	Parameter	Max.	Units	
V_R	Cathode -to – Anode Voltage	600	V	
I _F @ T _C = 100°C	Continuous Forward Current	15		
I _{FSM}	Single Pulse Forward Current		Α	
I _{FRM}	Maximum Repetitive Forward Current	60		
P _D @T _C = 25°C	Maximum Power Dissipation	74	10/	
P _D @T _C = 100°C Maximum Power Dissipation		29	W	
T_J	Operating Junction and	55.4450	0.0	
T_{STG}	Storage Temperature Range	-55 to + 150	°C	

^{* 125°}C

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V_{BR}	Cathode Anode Breakdown Voltage	600				I _R = 100μA
			1.3	1.7	V	I _F = 15A See Fig. 1
V_{FM}	Max Forward Voltage		1.5	2.0	·	I _F = 30A
			1.2	1.6		$I_F = 30A$, $T_J = 125$ °C
I _{RM} Max Rev	Max Reverse Leakage Current		1.0	10		$V_R = V_R$ Rated See Fig. 2
	Max Reverse Leakage Current		400	1000	μA	$T_J = 125^{\circ}C$, $V_R = 0.8 \times V_R$ Rated
C_T	Junction Capacitance		25	50	pF	V _R = 200V See Fig. 3
Ls	Series Inductance		12		nH	Measured lead to lead 5mm from package body

Dynamic	Recovery Characteristics @ $IJ = 25^{\circ}$	ecinea)				
	Parameter	Min.	Тур.	Max.	Units	Conditions
trr			19			$I_F = 1.0A$, dif/dt = 200A/ μ s, $V_R = 30V$
trr1	Reverse Recovery Time See Fig. 5,10		42	60	ns	T _J = 25°C
trr2			74	120		T _J = 125°C
I _{RRM1}	Peak Recovery Current See Fig. 6		4.0	6.0	Α	$T_J = 25^{\circ}C$ $I_F = 15A$
I _{RRM2}	Current See Fig. 0		6.5	10		$T_J = 125^{\circ}C$ $V_R = 200V$
Q _{rr1}	Deverse Beervery Charge Coe Fig 7		80	180	2	$T_J = 25^{\circ}C$ di/dt = 200A/µs
Q _{rr2}	Reverse Recovery Charge See Fig.7		220	600	nC	T _J = 125°C
di _{(rec)M/} dt1	Peak Rate of Fall of Recovery Current		188		A /	T _J = 25°C
di _{(rec)M/} dt2	During tb See Fig.8		160		A/µs	T _J = 125°C

Thermal -Mechanical Characteristics

	Parameter	Min.	Тур.	Max.	Units
T _{lead} ①	Lead Temperature			300	°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case			1.7	
R _{θJA} ②	Thermal Resistance, Junction to Ambient			40	K/W
$R_{\theta CS}$ ③	Thermal Resistance, Case to Heat Sink		0.25		
۱۸/4	Maight		6.0		g
Wt	Weight		0.21		(oz)
т	Mounting Torque	6.0		12	Kg-cm
I	Mounting Torque	5.0		10	lbf•in

- \odot 0.063 in. from Case (1.6mm) for 10 sec
- ② Typical Socket Mount
- 3 Mounting Surface, Flat, Smooth and Greased

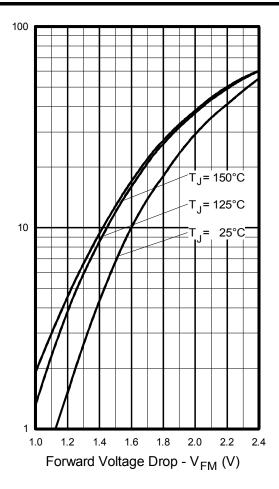


Fig. 1 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current

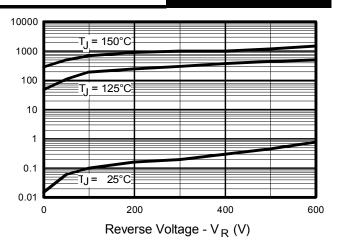


Fig. 2 - Typical Reverse Current vs. Reverse Voltage

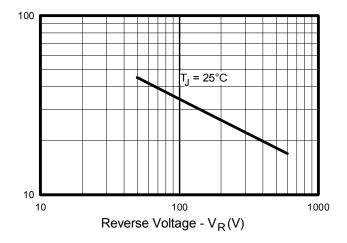


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

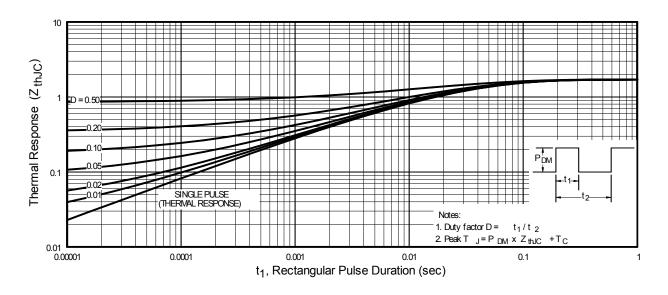


Fig. 4 - Maximum Thermal Impedance Zthjc Characteristics

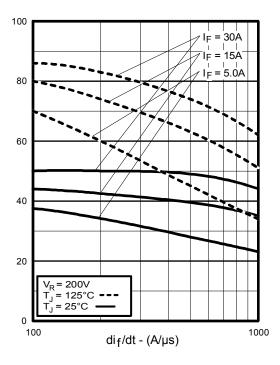


Fig. 5 - Typical Reverse Recovery vs. dif/dt

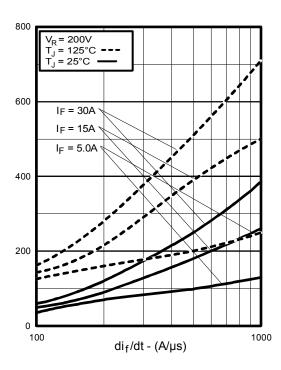


Fig. 7 - Typical Stored Charge vs. dif/dt

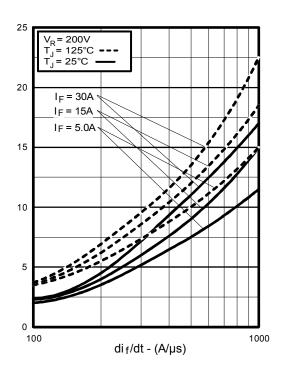


Fig. 6 - Typical Recovery Current vs. dif/dt

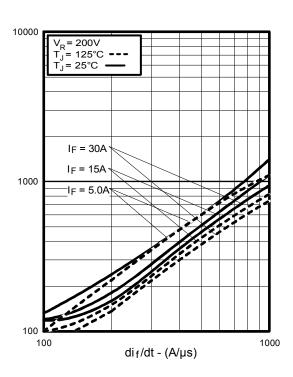
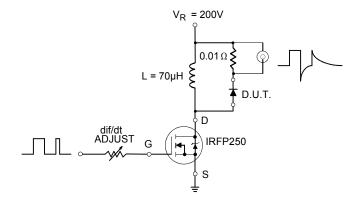
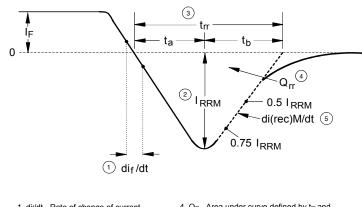




Fig. 8 - Typical di(rec)M/dt vs. dif/dt

REVERSE RECOVERY CIRCUIT

- dif/dt Rate of change of current through zero crossing
- through zero crossing
 2. IRRM Peak reverse recovery current
 3. tr Reverse recovery time measured
 from zero crossing point of negative
 going Ir to point where a line passing
 through 0.75 IRRM and 0.50 IRRM
 extrapolated to zero current
- 4. Qrr Area under curve defined by trr and IRRM

$$Q_{rr} = \frac{t_{rr} X I_{RRM}}{2}$$

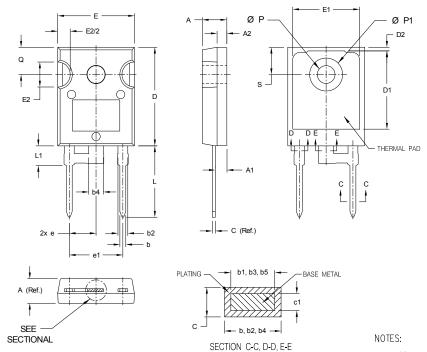
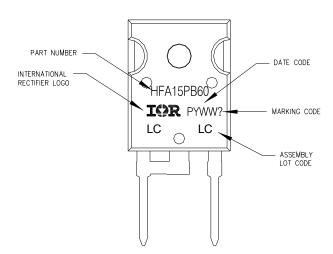

5. di(rec)M/dt - Peak rate of change of current during to portion of trr

Fig. 9 - Reverse Recovery Parameter Test Circuit

Fig. 10 - Reverse Recovery Waveform and Definitions


TO-247AC Package Outline (Dimensions are shown in millimeters (inches))

SYMBOL	MILLIM	ETERS	INCHES		
SIMBOL	MIN.	MAX.	MIN.	MAX.	
Α	4.65	5.31	.1831	.2091	
A1	2.21	2.59	.0870	.1020	
A2	1.50	2.49	.0591	.0980	
b	0.99	1.40	.0390	.0551	
b1	0.99	1.35	.0390	.0531	
b2	1.65	2.39	.0650	.0941	
b3	1.65	2.34	.0650	.0921	
b4	2.59	3.43	.1020	.1350	
b5	2.59	3.38	.1020	.1331	
С	0.38	0.89	.0150	.0350	
c1	0.38	0.84	.0150	.0331	
D	19.71	20.70	.7760	.8150	
D1	13.08		.5150		
D2	0.51	1.35	.0201	.0531	
E	15.29	15.87	.6020	.6248	
E1	13.46		.5299		
E2	4.52	5.49	.1780	.2161	
е	5.46	BASIC	.2150 BASIC		
L	14.20	16.10	.5591	.6339	
L1	3.71	4.29	.1461	.1689	
Q	5.31	5.69	.2091	.2240	
S	5.51 BASIC		.2169	BASIC	
øΡ	3.56	3.66	.1402	.1441	
øP1		7.39		.2909	

- 1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M 1994.
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

TO-247AC Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information[†]

	Industrial			
Qualification Level	(per JEDEC JESD47F) ††			
Moisture Sensitivity Level	TO-247AC	N/A		
RoHS Compliant	Yes			

- † Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability/
- †† Applicable version of JEDEC standard at the time of product release.

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA

To contact International Rectifier, please visit http://www.irf.com/whoto-call/