imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

The Future of Analog IC Technology

DESCRIPTION

The HFC0310 is a flyback controller with fixed-frequency operation.

The controller uses peak current mode to provide excellent transient response and ease loop compensation. When the output power falls below a given level, the controller enters burst mode to lower the stand-by power consumption.

An external capacitor connected between the FSET pin and GND programs the HFC0310 switching frequency. Otherwise, the HFC0310 uses a frequency shaping function that greatly reduces the noise level, and reduces the cost of the EMI filter.

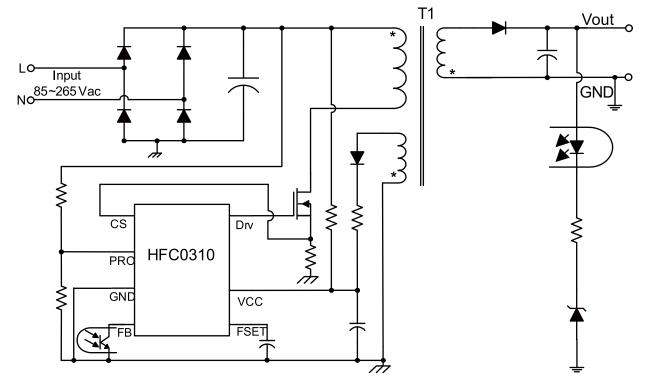
The HFC0310 provides various protections, such as thermal shutdown, V_{CC} under-voltage lockout, over-load protection, over-voltage protection, and short-circuit protection.

The HFC0310 is available in a SOIC8 package.

FEATURES

- Programmable switching frequency up to 600kHz
- Frequency shaping (±3.5%)
- Current-mode operation
- Very low start-up current (12µA)
- Very low standby power consumption via active-burst mode
- Internal 350ns leading-edge blanking
- Built-in 3ms soft-start function
- Internal slope compensation
- Built-in PRO pin pull-up (>3.25V) autorestart function
- Over-temperature protection
- V_{CC} under-voltage lockout with hysteresis
- Over-voltage protection on VCC
- Time-based over-load protection
- Short-circuit protection

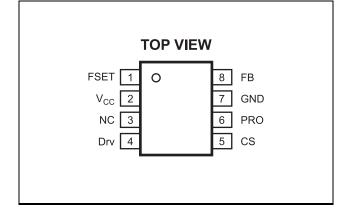
APPLICATIONS


- Power Meters
- Switching Mode Power Supplies
- AC/DC Adapters, Switching Chargers

All MPS parts are lead-free and adhere to the RoHS directive. For MPS green status, please visit MPS website under Quality Assurance.

"MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION



ORDERING INFORMATION

Part Number*	Package	Top Marking
HFC0310GS	SOIC8	HFC0310

* For Tape & Reel, add suffix -Z (e.g. HFC0310GS-Z);

PACKAGE REFERENCE

ABSOLUTE MAXIMUM RATINGS (1)

Vcc
All Other Pins
Continuous Power Dissipation $(T_A = +25^{\circ}C)^{(2)}$
SOIC81.04W
Junction Temperature
Lead Temperature
Storage Temperature60°C to +150°C
Thermal Shut Down 150°C
Thermal Shut Down Hysteresis40°C
ESD Capability Human Body Model (All Pins
except Drain)2.0kV
ESD Capability Machine Model200V
Operating Temperature40°C to +105°C

Recommended Operation Conditions ⁽³⁾

Thermal Resistance ⁽⁴⁾ *θ*_{JA} *θ*_{JC} SOIC8......96......96.......96......

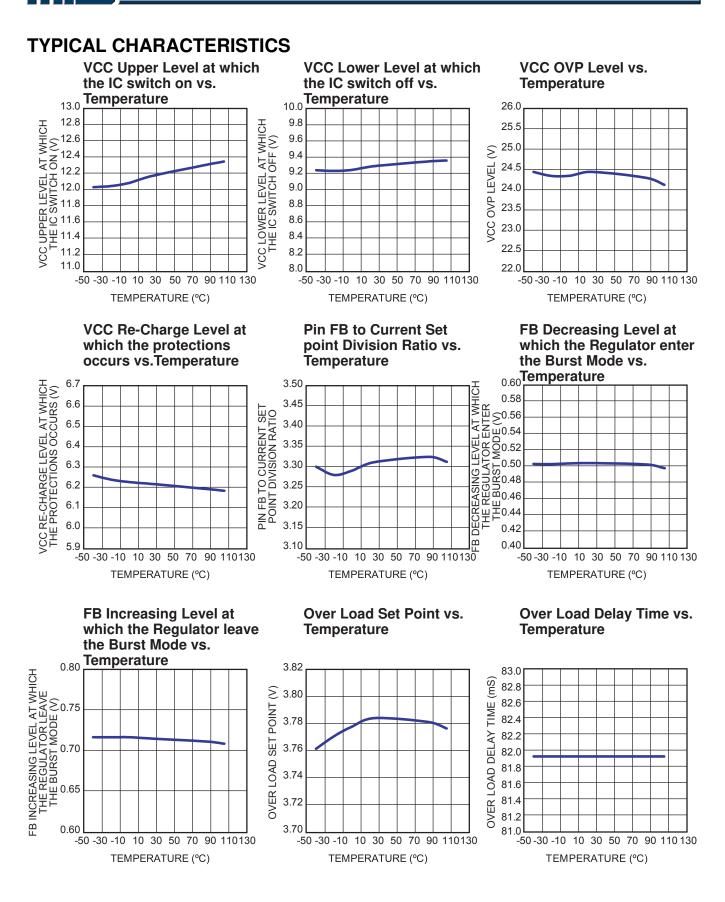
Notes:

- 2) The maximum allowable power dissipation is a function of the maximum junction temperature T_J (MAX), the junction-toambient thermal resistance θ_{JA} , and the ambient temperature T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = (T_J (MAX)-T_A)/ θ_{JA} . Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7, 4-layer PCB.

¹⁾ Exceeding these ratings may damage the device.

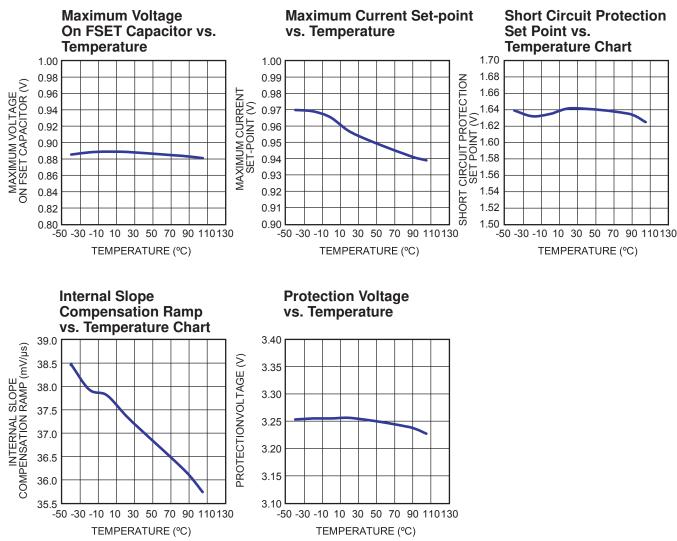
ELECTRICAL CHARACTERISTICS

 V_{CC} =12V, T_A =+25°C, unless otherwise noted


Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Driving Signal (Pin Drv)						
Sourcing Resistor	R _H			20		Ω
Sinking Resistor	RL			10		Ω
Supply Voltage Management (Pin Vcc)	-					•
V _{CC} Upper Turn-On/Off Level	V _{CCH}		11	12	13	V
V _{CC} , Lower Turn-On/Off Level	V _{CCL}		8.5	9.3	10	V
Start-Up Current	I _{ST}	V _{CC} =V _{CCH} - 0.5V, Before start up		12	20	μΑ
V _{CC} OVP Level	V _{OVP}		23.3	24.5	25.7	V
V _{cc} Protection-Enabled Recharge Level	V _{CCR}		5.7	6.2	6.7	V
Internal IC Consumption, Protection Phase	I _{Pro}	V _{CC} =6.0V		8	10	μA
Feedback Management (Pin FB)						
Internal Pull-Up Resistor	R _{FB}		12.5	14	15.5	kΩ
Internal Pull-Up Voltage	V _{UP}			4.5		V
FB to Current-Set–Point Division Ratio	I _{DIV}			3		
Internal Soft-Start Time	t _{ss}			3		ms
Falling FB Level Where the Regulator Enters Burst Mode	V _{BURL}			0.5		V
Rising FB Level where the Regulator Exits Burst Mode	V _{BURH}			0.7		V
Over-Load Set Point	V _{OLP}		3.5	3.8	4	V
Over-Load Delay Time	t _{Delay}	Fs=100kHz		82		ms
Timing Capacitor(FSET)						
Maximum Voltage on the FSET Capacitor	V _{FSETmax}		0.83	0.87	0.91	V
Source Current	I _{FSET}		45	53	61	μA
FSET Capacitor Discharge Time (Active at drive turn on)	t _{DISCH}			400		ns
Frequency Spectrum Shaping range, in percentage of Fs	R _{Shaping}			±3.5		%
Current Sampling Management (CS)				•	•	•
Leading-Edge Blanking for Current Sensor	t _{LEB1}			350		ns
Leading-Edge Blanking for SCP	t _{LEB2}			240		ns
Maximum Current Set-Point	V _{CS}		0.91	0.95	0.98	V
Short-Circuit–Protection Set Point	V _{SC}		1.55	1.65	1.75	V
Internal-Slope–Compensation Ramp	S _{Ramp}	f _s =100kHz		38		mV/µs
Protection Management (PRO)						· · ·
Protection Voltage	V _{PRO}		3.1	3.25	3.4	V
Protection Hysteresis	V _{HY}			0.2		V

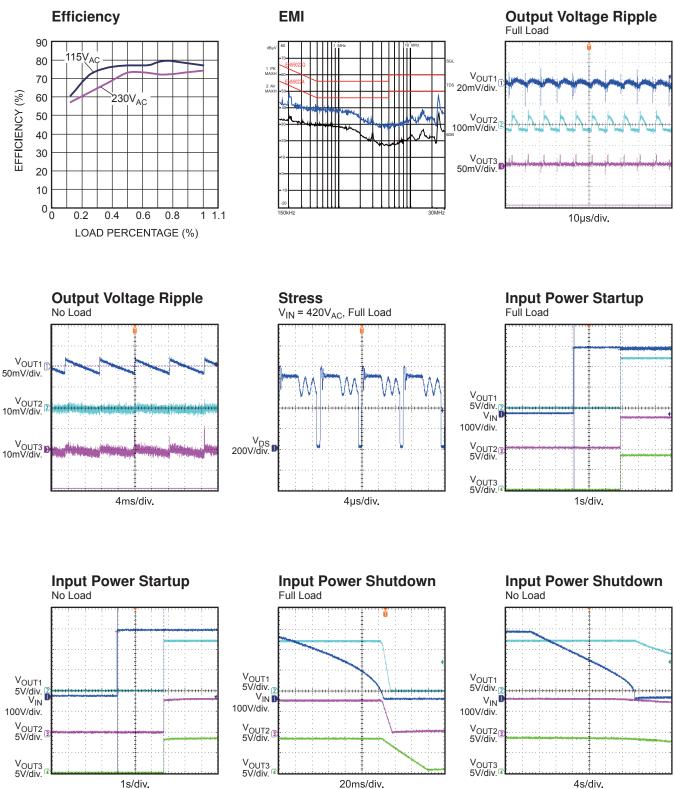
PIN FUNCTIONS

Package Pin #	Name	Description		
1	FSET	Switching Converter Frequency Set. Connect a capacitor to GND to set the switching frequency up to 600kHz.		
2	V _{CC}	Supply Voltage. Connect to a 47 μ F bulky capacitor and a 0.1 μ F ceramic capacitor for most applications. When V _{CC} rises to 12V, the IC starts switching; when it falls below 9.3V, the IC stops switching.		
3	NC	Not Connected. This pin ensures adequate creepage distance.		
4	Drv	Drive Signal Output.		
5	CS	Primary Current Sense.		
6	PRO	Pull up PRO to shut down the IC with hysteresis.		
7	GND	Ground.		
8	FB	Feedback. The output voltage from the external compensation circuit is fed into this pin. This pin and the current sense signal from Source determines the PWM duty cycle. A feedback voltage of 3.8V triggers over-load protection, while 0.5V triggers burst-mode operation. The regulator exits burst-mode operation and enters normal operation when the FB voltage reaches 0.7V		



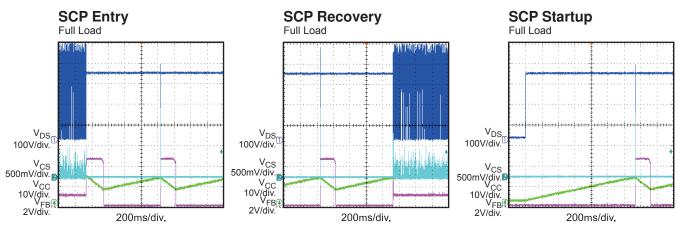
HFC0310 Rev. 1.02 1/28/2014 MF

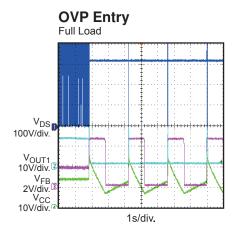
www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2014 MPS. All Rights Reserved.

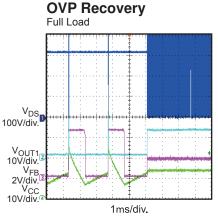

TYPICAL CHARACTERISTICS (continued)

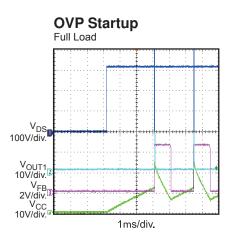
TYPICAL PERFORMANCE CHARACTERISTICS

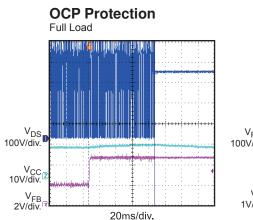
 V_{IN} =230VAC, V_{OUT1} =12V/0.8A, V_{OUT2} =8V/0.2A, V_{OUT3} =8V/0.05A, T_A =+25°C, unless otherwise noted.

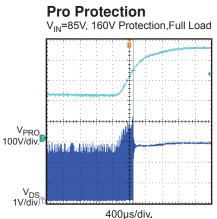



www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2014 MPS. All Rights Reserved.




TYPICAL PERFORMANCE CHARACTERISTICS (continued)


 V_{IN} =230VAC, V_{OUT1} =12V/0.8A, V_{OUT2} =8V/0.2A, V_{OUT3} =8V/0.05A, T_A =+25°C, unless otherwise noted.



www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2014 MPS. All Rights Reserved.

BLOCK DIAGRAM

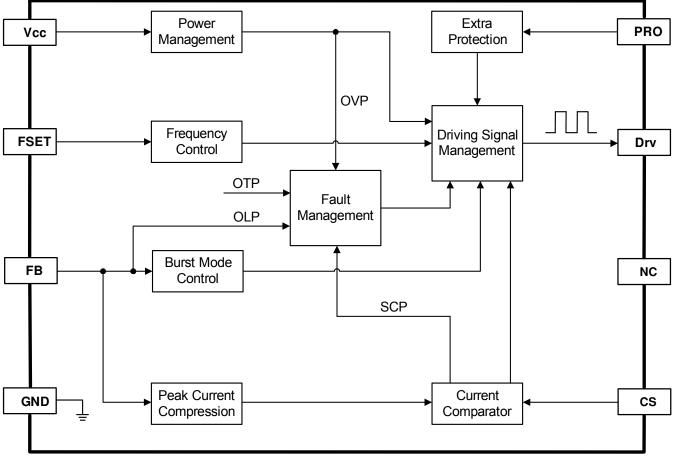
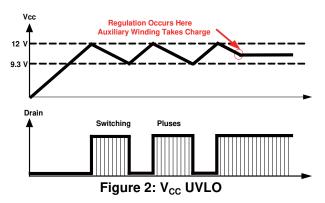


Figure 1: Functional Block Diagram

OPERATION

The HFC0310 incorporates all the necessary features to build a reliable switch-mode power supply. Its high level of integration requires very few external components. It has burst-mode operation to minimize the stand-by power consumption at light load. Protection features—such as auto-recovery for over-load protection (OLP), short-circuit protection (SCP), over-voltage protection (OVP), or thermal shutdown (TSD) for over-temperature protection (OTP)—contribute to a safer converter design without increasing circuit complexity.


PWM Operation

The HFC0310 is a fully integrated converter with adjustable-frequency peak-current-mode control PWM switching regulators. The output voltage is measured at FB through a resistive voltage divider, amplifier, and optocoupler. The voltage at the FB pin is compared to the internally measured switch current to control the output voltage. The integrated MOSFET turns on at the beginning of each clock cycle. The current in the inductor increases until it reaches the value set by the FB voltage, and then the integrated MOSFET turns off.

Start-Up and V_{cc} UVLO

During start-up, the IC only consumes the start up current (typically $12\mu A$), and the current supplied through the start-up resistor charges the V_{CC} capacitor.

The IC starts switching and the current increases to 1mA when V_{CC} reaches 12V. At this point, the transformer's auxiliary winding powers the IC. When V_{CC} falls below 9.3V, the regulator stops switching and the current through the start up resistor charges the V_{CC} capacitor again.

The lower threshold of VCC under-voltage lock-out (UVLO) decreases from 9.3V to 6.2V when fault conditions occur, such as OLP, OVP, and OTP.

Soft-Start

To reduce stress on the primary MOSFET and the secondary diode during start-up and to smoothly establish the output voltage, the HFC0310 has an internal soft-start circuit that gradually increases the primary current sense threshold, which determines the MOSFET peak current during start-up. The pulse-width of the power switching device progressively increases to establish optimal operating conditions until the feedback control loop takes charge.

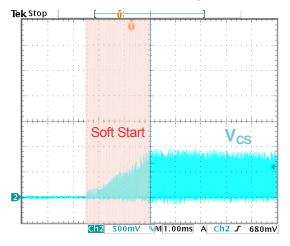


Figure 3: Soft Start

Switching Frequency

The capacitor between the FSET pin and GND sets the switching frequency of the HFC0310. Estimate the oscillator frequency as per the equation below:

$$f_{s} = \frac{1}{400 \times 10^{-9} + C \times \frac{0.87}{53 \times 10^{-6}}} Hz$$

Over Voltage Protection

Monitoring the V_{CC} pin via a 20µs time constant filter allows the HFC0310 to enter OVP during an over-voltage condition; typically when V_{CC} goes above 24.5V. The controller will resume operation after the fault disappears.

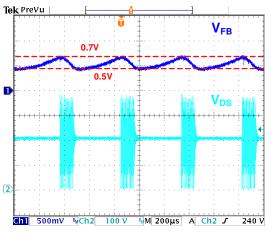
Over-Current Protection

The HFC0310 continuously monitors the FB pin. When FB pulls up to 3.8V, if after a 8192 switching cycle delay the fault signal is still present, the HFC0310 shuts down as soon as the power supply undergoes an overload. When the fault disappears, the power supply resumes operation.

Short-Circuit Protection

By monitoring the CS pin, the HFC0310 shuts down when the voltage rises higher than 1.65V, to indicate a short circuit. The HFC0310 enters a safe low-power mode that prevents any lethal thermal or stress damage. As soon as the fault disappears, the power supply resumes operation.

Thermal Shutdown


When the temperature of the IC exceeds 150°C, the OTP is activated and the controller enters auto-recovery mode.

Burst Operation

To minimize stand-by power consumption, the HFC0310 implements burst mode at no load or light load. As the load decreases, the FB voltage decreases. The IC stops switching when the FB voltage drops below the lower threshold, V_{BRUL} (0.5V). Then the output voltage drops at a rate dependent on the load. This causes the FB voltage to rise again due to the negative feedback control loop. Once the FB voltage exceeds the upper threshold, V_{BRUH} (0.7V), the switching pulse resumes. The FB voltage then decreases and the whole process repeats. Burst-mode operation alternately enables and disables

the switching pulse of the MOSFET. Hence switching loss at no load or light load conditions is greatly reduced.

Figure 4 shows the signals generated by burstmode operation.

Figure 4: Burst-Mode Operation PRO Pin

The PRO pin provides extra protection against abnormal conditions. Use the PRO pin for input OVP and/or other protections. If the PRO pin voltage exceeds 3.25V, the IC shuts down. As soon as the fault disappears, the power supply resumes operation.

Leading-Edge Blanking (LEB)

In normal operation, a shunt resistor between the Source pin and Ground senses the primary peak current. The FB voltage sets the turn-off threshold of the MOSFET, $V_{SENSE}=V_{FB}/3$. When the shunt resistor voltage drops to V_{SENSE} , the MOSFET turns off.

During start-up and over-load condition, the primary peak current threshold is internally limited to 0.95V even if V_{FB} voltage exceeds 2.85V to avoid excessive output power and lower the switch voltage rating.

In order to avoid turning off the MOSFET by mistriggered spikes shortly after the switch turns on, the IC implements a 350ns leading-edge blanking period. During blanking time, any trigger signal on the source pin is blocked. Figure 5 shows the primary-current–sense waveform and the leading-edge blanking.

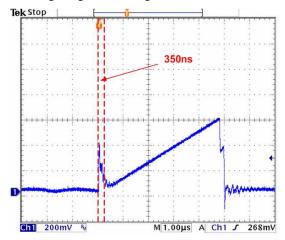
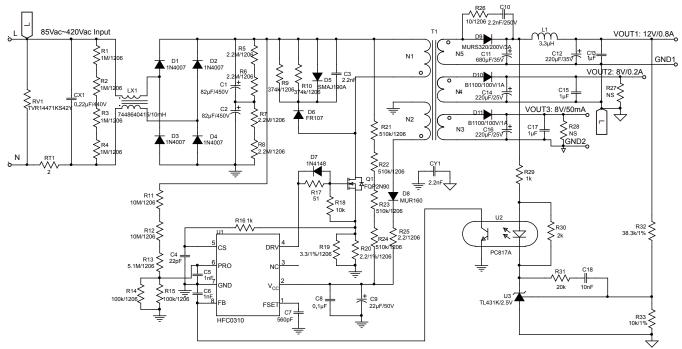


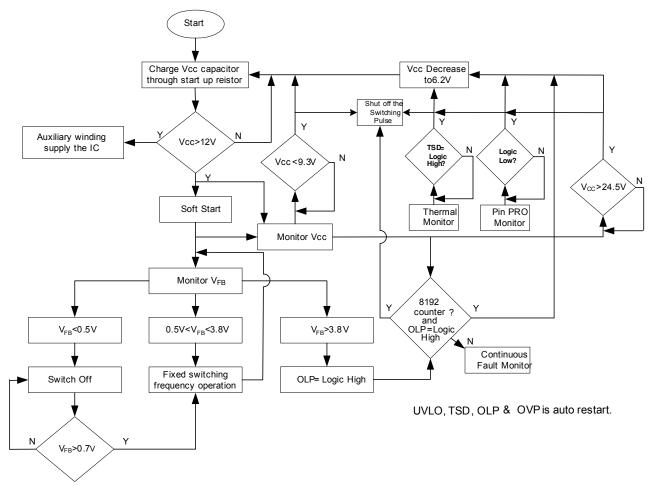
Figure 5: Leading-Edge Blanking

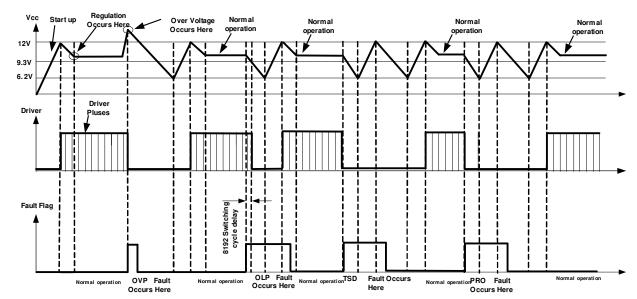
Design Example


The following is a design example using the application guidelines for the given specifications:

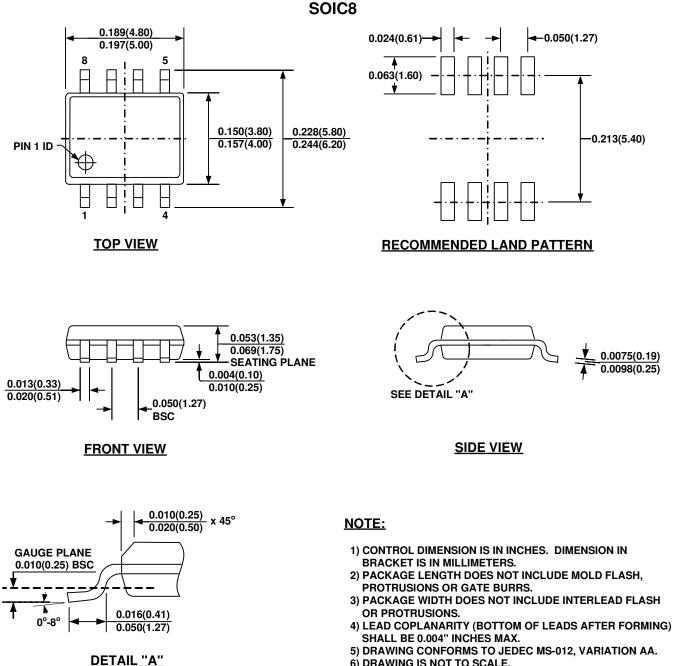
V _{IN}	85V to 420V		
V _{OUT1}	_{T1} 12V		
V _{OUT2}	8V		
V _{OUT3}	8V		
f _{s₩}	100kHz		

The detailed application schematic is shown in Figure 6. The typical performance and circuit waveforms have been shown in the Typical Performance Characteristics section. For more possible applications of this device, please refer to the related Evaluation Board datasheets.


TYPICAL APPLICATION CIRCUITS


Figure 6: Typical Application Schematic

FLOW CHART



SIGNAL EVOLUTION IN THE PRESENCE OF FAULTS

PACKAGE INFORMATION

6) DRAWING IS NOT TO SCALE.

NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.