imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Finisar

Product Specification

2.5Gbps 850nm VCSEL, LC TOSA

HFE4190-441, HFE4191-441

PRODUCT FEATURES

- 850nm multi-mode oxide isolated VCSEL
- Extended Temperature Range Operation (- 40 to +85 deg operating range)
- Capable of modulation operation from DC to 2.5Gbps
- TO-46 tilt window metal can component, prealigned into LC Sleeve
- Designed for drive currents between 3-15mA average
- Packaged with a back monitor
- Attenuated window can

These products are high-performance 850nm VCSELs (Vertical Cavity Surface-Emitting Lasers) designed for high-speed data communications and packaged with a custom designed power monitor diode. The power monitor diode can be used with appropriate feedback control circuitry to set a maximum power level for the VCSEL. These combined features simplify design for high data rate communication and eye safety.

These products are designed to be used with inexpensive silicon or gallium arsenide detectors, but excellent performance can also be achieved with some indium gallium arsenide detectors (see HFD3180-103 and HFD3180-108 product data sheets).

VCSELs produce circularly symmetric, non-astigmatic, narrow divergence beams that, with appropriate lensing, fiber couple all of the emitter power. These LC TOSA products are prealigned and focused fiber optic transmitters designed to interface with 50/125 and 62.5/125 m multi-mode fiber

Part Number	Description
HFE4190-441	LC TOSA with attenuated TO-46 component, VCSEL with Back Monitor Photodiode, Anode of VCSEL common with Photodiode Cathode
HFE4191-441	LC TOSA with attenuated TO-46 component, VCSEL with Back Monitor Photodiode, Cathode of VCSEL common with Photodiode Anode

PRODUCT SELECTION

I. Absolute Maximum Ratings

Parameter	Rating
Storage Temperature	-40 to +85°C
Case Operating Temperature	-40* to +85°C
Lead Solder Temperature	260°C, 10 sec.
Laser continuous average current	12mA
Laser peak forward current with pulse width less than 1us	18mA
Laser reverse voltage	5V
ESD Exposure (Human Body Model)	225V ¹

¹Heel and wrist straps must be used on a properly grounded workstation

	INVISIBLE LASER RA	DIATION
C	DO NOT VIEW DIRECT	TLY WITH
	OPTICAL INSTRUM	AENTS
	10mW at 820 - 86	50nm
	CLASS 1M LASER PI	RODUCT
с	OMPLIES WITH IEC/E	EN 60825-1
	Ed1.2:2001	
C	OMPLIES WITH 21 CR	FR 1040.10
	AND 1040-10.11 EXCI	EPT FOR
	DEVIATION PURSU	
	LASER NOTICE N	
	DATED 26 JULY	2001
		_
600	d Optical Component Millennium Drive, Allen, TX 75013	
	LASER RADIATI AVOID EXPOSURE TO CLASS 1M LASER PE	OBEAM

Notice

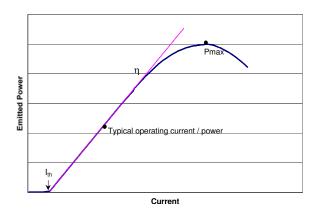
Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operations section for extended periods of time may affect reliability.

Notice

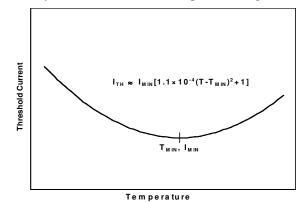
The inherent design of this component causes it to be sensitive to electrostatic discharge (ESD). To prevent ESD-induced damage and/or degradation to equipment, take normal ESD precautions when handling this product

VCSEL Parameters	Test Condition	Symbol	Min.	Тур.	Max.	Units	Notes
Average Fiber Coupled Power	$I_F = 7mA$	P _{OC}		0.500		mW	2
Minimum coupling efficiency including wiggle	$I_F = 7mA$		55			%	2
Threshold Current		I _{TH}	0.5	1.8	2.5	mA	
Threshold Current maximum deviation from 25°C value	$T_A = 0^{\circ}C$ to $70^{\circ}C$	ΔI_{TH}	-0.5		1	mA	3
	$T_A = 25^{\circ}C$ to $85^{\circ}C$	ΔI_{TH}			1.7	mA	3
	$T_A = -40^{\circ}C$ to $25^{\circ}C$	ΔI_{TH}			2.5	mA	3
Temperature at minimum threshold current		T _o	-20		50	°C	3
Slope Efficiency	$T_A = 25^{\circ}C$	η	0.04	0.125	0.16	mW/mA	4
	$T_A = -40^{\circ}C$	η			0.200	mW/mA	
	$T_A = 85^{\circ}C$	η	0.03			mW/mA	
Slope Efficiency Temperature variation	$T_A = 0^{\circ}C$ to $70^{\circ}C$	Δη/ΔΤ		-6000		ppm/ °C	5
Peak Wavelength	$I_F = 7mA,$ $T_A = 0^{\circ}C \text{ to } 85^{\circ}C$	λ_{P}	830	850	860	nm	
λ_P Temperature Variation	$I_F = 7mA,$ $T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	$\Delta\lambda_{\rm P}/\Delta T$		0.06		nm/°C	
Spectral Bandwidth, RMS	$I_F = 7mA$	Δλ			0.65	nm	
Laser Forward Voltage	$I_F = 7mA$	V _F		1.8	2.0	V	
Rise and Fall Times	Pavg = 0.625mW,	t _r			130	ps	6
	Extinction Ratio = 10	t _f		1.0.0	150	15.42	
Relative Intensity Noise	$1 \text{ GHz BW}, I_F = 7\text{mA}$	RIN		-130	-122	dB/Hz	
Series Resistance	$I_F = 7 \text{mA}$, $T_A = 25^{\circ}\text{C}$	R _s	25	35	50	Ω	
	$T_{\rm A} = -40^{\circ} \rm C$	R _s			60	Ω	
	$T_A = 85^{\circ}C$	R _S	20			Ω	
Series Resistance Temperature Coefficient	$I_F = 7mA$, $T_A = 0^{\circ}C$ to $70^{\circ}C$	$\Delta R_s / \Delta T$		-3000		ppm/ °C	7
Photodiode Parameters	Test Condition	Symbol	Min.	Тур.	Max.	Units	Notes
Monitor Current	Poc = 0.5 mW, T _A = 25° C	I _{PD}	0.1		0.6	mA	
	Poc = 0.5 mW, T _A = - 40° C	I _{PD}	TBD		TBD		
	Poc = 0.5 mW, T _A = +85°C	I _{PD}	TBD		TBD	mA	
Monitor current Temperature Variation	Poc = 0.5 mW, 0°C to 70°C	$\Delta I_{PD} / \Delta T$		TBD		%/°C	
Monitor Current Tracking		Deltrk		TBD			8
Dark Current	$Po = 0mW, V_R = 3V$	ID			20	nA	
PD Capacitance	$V_R = 0V$, Freq = 1MHz $V_R = 3V$, Freq = 1MHz	С		75 40	100 55	pF	

II. Electro-Optical Characteristics


Notes:

- 1. Reliability is a function of temperature, see www.finisar.com for details.
- For the purpose of these tests, I_F is DC current. 2.
- Threshold current varies as $(T_A T_O)^2$. It may either increase or decrease with temperature, 3. depending upon relationship of T_A to T_0 . The magnitude of the change is proportional to the threshold at T₀.
- Slope efficiency is defined as $\Delta P_0 / \Delta I_F$. 4.
- 5. To compute the value of Slope Efficiency at a temperature T, use the following equation: $\eta(T) \approx \eta(25^{\circ}C)^* [1 + (\Delta \eta / \Delta T)^* (T-25)]$
- Rise and fall times specifications are the 20% 80%. Most of the devices will measure <135ps fall 6. time. Rise and fall times are sensitive to drive electronics.
- 7. To compute the value of Series Resistance at a temperature T, use the following equation: $R_{S}(T) \approx R_{S}(25^{\circ}C)^{*}[1 + (\Delta R_{S}/\Delta T)^{*}(T-25)]$
- 8. Monitor current tracking is defined as follows:


 $I_{PD}(Po = 0.75 mW) / 0.75 mW$ Deltrk = $I_{PD}(P_{O} = 0.45 \text{ mW}) / 0.45 \text{ mW}$

III. **Typical Performance Curves**

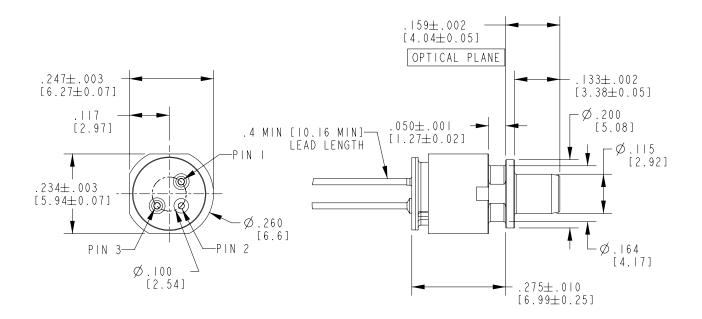
Emitted Power vs. Current: Power varies approximately Threshold Current vs. Temperature: Threshold linearly with current above threshold.

current varies parabolically with temperature; thus it can be nearly constant for a limited temperature range.

IV. Environmental Specifications

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Case Operating Temperature	T _{op}	-40		85	°C	
Storage Temperature	T _{sto}	-40		85	°C	

V. Regulatory Compliance


Feature	Agency	Standard	Certificate Number
Laser Eye Safety	FDA/CDRH	CDRH 21 CFR 1040 and Laser Notice 50	

Copies of the referenced certificates are available at Finisar Corporation upon request.

VI. Mechanical Specifications

HFE4190-441		HFE4191-441		
Number	Function	Number	Function	
1	K _{LD}	1	A _{LD}	
2	K_{PD}, A_{LD}	2	K _{LD} , A _{PD}	
3	A _{PD}	3	K _{PD}	

-				
	A _{LD}	VCSEL Anode	A _{PD}	Monitor Photodiode Anode
	K _{LD}	VCSEL Cathode	K _{PD}	Monitor Photodiode Cathode

(dimensions are in inches [mm])

XI. Revision History

Revision	Date	Description	
A1	4/13/2013	• Document created.	

XII. For More Information

Finisar Corporation 1389 Moffett Park Drive Sunnyvale, CA 94089-1133 Tel. 1-408-548-1000 Fax 1-408-541-6138 sales@finisar.com www.finisar.com