: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

GENERAL DESCRIPTION

The $\mathrm{HI}-3000 \mathrm{H}$ is a 1 Mbps Controller Area Network (CAN) transceiver optimized for use in high temperature avionics applications. The device is capable of operating at extended temperature ranges of $-55^{\circ} \mathrm{C}$ to $175^{\circ} \mathrm{C}$ for plastic packages and $-55^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$ for the ceramic CERDIP-8 package. It interfaces between a CAN protocol controller and the physical wires of the bus in a CAN network. Differential output amplitude and current drive capability are specifically enhanced to meet the needs of long cable runs typical of avionics applications.

The HI-3000H supports two modes of operation: Normal Mode and Standby Mode. The Standby Mode is a very low-current mode which continues to monitor bus activity and allows an external controller to manage wake-up.

Superior common-mode receiver performance makes the device especially suitable for applications where ground reference voltages may vary from point to point over long distances along the CAN bus. In addition, the $\mathrm{HI}-3000 \mathrm{H}$ provides a SPLIT pin to give an output reference voltage of VDD/2 which can be used for stabilizing the recessive bus level when the split termination technique is used to terminate the bus.

A TXD dominant time-out feature protects the bus from being driven into a permanent dominant state (so-called "babbling idiot") if pin TXD becomes permanently low due to application failure.

The device also has short circuit protection to $+/-58 \mathrm{~V}$ on CANH, CANL and SPLIT pins and ESD protection to $+/-6 \mathrm{kV}$ on all pins.

The $\mathrm{HI}-3001 \mathrm{H}$ is identical to the $\mathrm{HI}-3000 \mathrm{H}$ except the SPLIT pin is substituted with a VIO supply voltage pin. This allows the $\mathrm{HI}-3001 \mathrm{H}$ to interface directly with controllers with 3.3 V supply voltages.

PIN CONFIGURATIONS (Top Views)

8-Pin Plastic SOIC package (Narrow Body) \& 8-Pin Ceramic CERDIP

FEATURES

- Extended Temperature Ranges $-55^{\circ} \mathrm{C}$ to $175^{\circ} \mathrm{C}$ (plastic SOIC-8 package) and $-55^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$ (ceramic CERDIP8 package)
- Compatible with ARINC 825 and ISO 11898-5 standards.
- Signaling rates up to $1 \mathrm{Mbit} / \mathrm{s}$.
- Internal VDD/2 voltage source available to stabilize the recessive bus level if split termination is used $(\mathrm{HI}-3000 \mathrm{H}$ SPLIT pin).
- VIO input on HI-3001H allows for direct interfacing with 3.3 V controllers.
- Detection of permanent dominant on TXD pin (babbling idiot protection).
- High impedance allows connection of up to 120 nodes.
- Input levels compatible with 3.3 V or 5 V controllers.
- CANH, CANL and SPLIT pins short-circuit proof to +/58 V .
- Will not disturb the bus if unpowered.

PIN DESCRIPTIONS

SIGNAL	FUNCTION	DESCRIPTION
TXD	INPUT	100 kOhm internal pull-up. Transmit Data Input.
GND	POWER	Chip 0V supply
VDD	POWER	Positive supply, 5V +/-5\%. Bypass with 0.1uF ceramic capacitor.
RXD	OUTPUT	Receive Data Output.
CANL	BUS I/O	CAN Bus Line Low.
CANH	BUS I/O	CAN Bus Line High.
STB	INPUT	100 kOhm internal pull-up. Standby Mode selection input. Drive STB low or connect to GND for Normal operation. Drive STB high to select low-current Standby Mode.
SPLIT (HI-3000H)	INPUT	Supplies a VDD/2 output to provide recessive bus level stabilization when a split termination is used to terminate the bus.
VIO	INPUT	Connect to a 3.3V supply to allow compatibility of all digital I/O (RXD, TXD, STB) with a (HI-3001H)

BLOCK DIAGRAM

Figure 1. HI-3000H Functional Block Diagram

FUNCTIONAL DESCRIPTION

OPERATING MODES

The $\mathrm{HI}-3000 \mathrm{H}$ provides two modes of operation which are selectable via the STB pin. Table 1 summarizes the modes.

Table 1 - Operating Modes

MODE	STB pin
Normal	LOW
Standby	HIGH

Normal Mode

Normal mode is selected by setting the STB pin to a LOW logic level (GND). In this mode, the transceiver transmits and receives data in the usual way from the CANH and CANL bus lines. The differential receiver converts the analog bus data to digital data which is output on the RXD pin (Note: the RXD output on $\mathrm{HI}-3001 \mathrm{H}$ is compatible with 3.3 V controllers if the VIO pin is connected to a 3.3 V supply).

Standby Mode

Standby Mode is selected by setting the STB pin to a HIGH logic level. In this mode, the transmitter is switched off and a low power differential receiver monitors the bus lines for activity. A dominant signal of more than 3μ s will be reflected on the RXD pin as a logic LOW, where it may be detected by the host as a wake-up request. The device will not leave standby mode until the host forces the STB pin to a logic low.

SPLIT Circuit

The SPLIT pin provides a stable VDD/2 DC voltage. This pin can be used to stabilize the recessive common mode voltage by connecting the SPLIT pin to the center tap of the split termination (see figure 7). In the case of a recessive bus voltage dropping below the ideal value of VDD/2 (e.g.
due to an unpowered node with high leakage from the bus lines to ground), the split circuit will force the recessive voltage to VDD/2.

INTERNAL PROTECTION FEATURES

Short-circuit protection

Short-circuit protection is provided on the CANH, CANL and SPLIT pins. These pins are protected from ESD to over 6KV (HBM) and from shorts between -58 V and +58 V continuous, as specified in ISO 11898-5. The short circuit current is limited to less than 200mAtypical.

TXD permanent dominant time-out

A timer circuit prevents the bus lines being driven into a permanent dominant state, which would result in a situation blocking all bus traffic. This could happen in the case of the TXD pin becoming permanently low due to a hardware or application failure. The timer is triggered by a negative edge on the TXD pin (start of dominant state). If the TXD pin is not set high (recessive state) after a typical time of 2 ms , the transmitter outputs will be disabled, driving the bus lines into the recessive state. The timer is reset by a positive edge on the TXD pin. Note that the minimum TXD dominant time-out time, tdom $=300 \mu \mathrm{~s}$, defines the minimum possible bit rate of 40kbit/s (the CAN protocol specifies a maximum of 11 successive dominant bits - 5 successive dominant bits immediately followed by an error frame).

Fail-safe features

Pin TXD has a pull up in order to force a recessive level if pin TXD is left open.

Pins TXD and STB will become floating if power is lost. This will prevent reverse currents via these pins.

TIMING DIAGRAMS

Timing Delays

TXD dominant time-out feature

ABSOLUTE MAXIMUM RATINGS

(Voltages referenced to GND $=0 \mathrm{~V}$)

Supply Voltage, VDD, VIO : ... 7 F	Operating Temperature Range: (Plastic)............................ $-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$(Ceramic)................. $-55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$	
Current at Input pins ..-100mA to +100mA		
DC Voltages at TXD, RXD and STB-0.5V to VDD +0.5 V		
DC Voltages at CANH, CANL and SPLIT:-58V to +58 V	Storage Temperature Range:	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Electrostatic Discharge (ESD) ${ }^{1}$, All pins ..+/- 6kV	Soldering Temperature:	(Ceramic).................... 60 sec. at $+300^{\circ} \mathrm{C}$ (Plastic - leads).................. at $+280^{\circ}+20{ }^{\circ} \mathrm{C}$ Max. (Plastic - body)

NOTES:

1. Human Body Model (HBM).

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\mathrm{VDD}=5 \mathrm{~V} \pm 5 \%$, Operating temperature range (unless otherwise noted). Positive currents flow into the IC.

PARAMETER	SYMBOL	CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
SUPPLY CURRENT						
Vdd Supply Current	IDD	Recessive: $\mathrm{V}_{T \times D}=\mathrm{V}_{\mathrm{DD}}$ Dominant: VTXD $=0 \mathrm{~V}$ Standby Mode: VTXD = VdD		$\begin{aligned} & 6 \\ & 50 \\ & 15 \end{aligned}$	10 70 50	mA mA $\mu \mathrm{A}$
VIO Supply Current	IIO				100	$\mu \mathrm{A}$
DIGITAL INPUTS (Pins TXD, STB)						
HIGH-level input voltage (see Note 1) LOW-level input voltage (TXD pin)	$\begin{aligned} & \text { VIH } \\ & \text { VIL } \end{aligned}$		$\begin{gathered} 80 \% \text { VDD } \\ -0.5 \end{gathered}$		$\begin{gathered} \text { VDD + } 0.5 \\ 20 \% V D D \end{gathered}$	V
HIGH-level input current LOW-level input current	$\begin{aligned} & \mathrm{IH} \\ & \mathrm{IIL} \end{aligned}$	$\begin{gathered} V_{T X D}=\operatorname{VDD} \text { or VIO } \\ V_{T X D}=0 \mathrm{~V} \end{gathered}$	- 5	$\begin{gathered} 0 \\ -50 \end{gathered}$	$\begin{gathered} +5 \\ -150 \end{gathered}$	${ }_{\mu}^{\mu} \mathrm{A}$
DIGITAL OUTPUTS						
HIGH-level output voltage (RXD Pin) (see Note 1) LOW-level output voltage (RXD Pin)	Voh Vol	$\begin{aligned} & \mathrm{IOH}=1 \mathrm{~mA} \\ & \mathrm{IOL}=1 \mathrm{~mA} \end{aligned}$	$\underset{0}{90 \% V D D}$	0.1	10\%VDD	V
Output voltage (SPLIT Pin) Standby leakage current (SPLIT Pin)	Vsplit ІІтв	$-100 \mu \mathrm{~A}$ < ISPLIT < $100 \mu \mathrm{~A}$	$\begin{gathered} 0.45 \mathrm{VDD} \\ -5 \end{gathered}$	0.5 VDD	$\begin{gathered} 0.55 \mathrm{VDD} \\ +5 \end{gathered}$	$\begin{gathered} V \\ \mu \mathrm{~A} \end{gathered}$
DRIVER						
CANH dominant output voltage CANL dominant output voltage	Vo(CANH) Vo(CANL)	$\begin{gathered} V \text { TXD }=0 V \\ V_{T X D}=0 \mathrm{~V} \text { (See Fig. 2) } \end{gathered}$	$\begin{gathered} 3 \\ 0.5 \end{gathered}$	$\begin{aligned} & 3.6 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 4.25 \\ & 1.75 \end{aligned}$	V
Recessive output voltage	$\operatorname{VcanH}(r)$, VcanL(r)	VtXd $=$ Vdd, RL $=0$ (See Fig. 2)	2	0.5Vdd	3	V
Bus output voltage in standby	Vstb	$V_{T X D}=$ Vdd, RL $=0$ (See Fig. 2)	-0.1		0.1	V
Dominant differential output voltage Recessive differential output voltage	$\operatorname{VDIFF}(\mathrm{d})(0)$ VDIFF(r)(o)	$\begin{gathered} V_{T X D}=0 \mathrm{~V}, 45 \Omega<\mathrm{RL}<65 \Omega \\ \text { VTXD }=\text { VDD, no load (See Fig. 2) } \end{gathered}$	$\begin{array}{r} 1.5 \\ -50 \end{array}$	$\begin{gathered} 1.8 \\ 0 \end{gathered}$	$\begin{gathered} 3 \\ 50 \end{gathered}$	$\underset{\mathrm{mV}}{\mathrm{~V}}$
Matching of dominant output voltage, VdD - Vo(CANH) - Vo(CANL)	Vом	(See Fig. 4)	- 100	-40	150	mV
Steady state common mode output voltage	Voc(ss)	Vstb $=0 \mathrm{~V}, \mathrm{RL}=60 \Omega$ (See Fig. 5)	2	0.5VdD	3	V

NOTE:

1. When VIO is connected $(\mathrm{HI}-3001 \mathrm{H})$, limits are referenced wrt VIO rather than VDD.

DC ELECTRICAL CHARACTERISTICS (cont.)

$\mathrm{V} D \mathrm{D}=5 \mathrm{~V} \pm 5 \%$, Operating temperature range. Positive currents flow into the IC.

PARAMETER	SYMBOL	CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
Short-circuit steady-state output current	los(ss)	$\begin{gathered} \text { VCANH }=+58 \mathrm{~V} \text {, Vcanl open } \\ \text { VCANH }=-58 \mathrm{~V}, \text { VcanL openV } \\ \text { VCANL }=+58 \mathrm{~V}, \text { VcANH open } \\ \text { VCANL }=-58 \mathrm{~V}, \text { VcanH open (See Fig. 6) } \end{gathered}$	$\begin{gathered} -20 \\ -200 \\ 100 \\ -20 \end{gathered}$		$\begin{gathered} 20 \\ 100 \\ 200 \\ 20 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
RECEIVER						
Differential receiver threshold voltage	$V_{T h}(\mathrm{Rx})$ (diff)	- 12 V < Vcanh, Vcanl < + 12 V	500	700	900	mV
Differential hysteresis voltage .	VHys(Rx)(diff)	- 12 V < Vcanh, Vcanl < + 12 V	50	120	200	mV
Differential hysteresis voltage in Standby mode	VHys(Stb)(diff)	- 12 V < Vcanh, Vcanl < + 12 V	500		1150	mV
Input leakage current, unpowered node	ICANH, ICANL	$\begin{gathered} \mathrm{VDD}=\mathrm{VIO} 0 \mathrm{~V} \\ \mathrm{VCANH}=\mathrm{VCANL}=5 \mathrm{~V} \end{gathered}$	- 200		+ 200	$\mu \mathrm{A}$
Differential input resistance	RIN(DIFF)	$\begin{gathered} \text { VTXD }=\text { VDD } \\ -12 \mathrm{~V}<\mathrm{VCANH}, \mathrm{VCANL}<+12 \mathrm{~V} \end{gathered}$	25	50	100	k ת
Common mode input resistance	Rin(Cm)	$\begin{gathered} \text { VTXD }=\text { VdD } \\ -12 \mathrm{~V}<\mathrm{VCANH}, \mathrm{VCANL}<+12 \mathrm{~V} \end{gathered}$	15	30	45	k Ω
Deviation between common mode input resistance between CANH and CANL	$\operatorname{RIN}(\mathrm{CM})(\mathrm{m})$	V canh $=\mathrm{V}$ cant	-3		+ 3	\%

AC ELECTRICAL CHARACTERISTICS

$\mathrm{V} D \mathrm{D}=5 \mathrm{~V} \pm 5 \%$, Operating temperature range. Positive currents flow into the IC.

PARAMETER	SYMBOL	CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
Bit time Bit rate	tBit fBit		$\begin{gathered} 1 \\ 40 \end{gathered}$		$\begin{gathered} 25 \\ 1000 \end{gathered}$	$\underset{\mathrm{kHz}}{\mu \mathrm{~s}}$
Common mode input capacitance ${ }^{3}$ Differential input capacitance ${ }^{3}$	Cin(CM) Cdiff(CM)	$V_{T X D}=$ Vdd, $1 \mathrm{Mbit} / \mathrm{s}$ data rate VTXD = VDD, 1 Mbit/s data rate		$\begin{aligned} & 20 \\ & 10 \end{aligned}$		pF
Delay TXD to bus active Delay TXD to bus inactive Delay bus active to RXD Delay bus inactive to RXD	tdr(TXD) tdf(TXD) tdf(RXD) $\operatorname{tdr}($ RXD $)$	See Timing Diagrans		$\begin{aligned} & 40 \\ & 40 \\ & 30 \\ & 70 \end{aligned}$	$\begin{gathered} 90 \\ 90 \\ 70 \\ 150 \end{gathered}$	ns ns ns ns
Propagation delay TXD to RXD (recessive to dominant) Propagation delay TXD to RXD (dominant to recessive) TXD permanent dominant time-out TXD permanent dominant timer reset time	tProp1 tProp2 tdom tRdom	$\mathrm{V} T X D=0 \mathrm{~V}$ Rising edge on TXD while in permanent dominant state	0.3	$\begin{gathered} 70 \\ 110 \\ 2 \end{gathered}$	$\begin{gathered} 160 \\ 240 \\ 6 \\ 1 \end{gathered}$	ns ns ms $\mu \mathrm{S}$
Dominant time required on bus for wake up from standby	$t_{\text {wake }}$		0.5	3	5	$\mu \mathrm{s}$

NOTES:

1. All currents into the device pins are positive; all currents out of the device pins are negative.
2. All typicals are given for $\mathrm{VDD}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Guaranteed by design but not tested.

Application and Test Information

Figure 2. CAN Bus Driver Circuit

Figure 3. CAN Bus Driver (Dominant) Test Circuit

Transceiver

Figure 4. Driver Output Symmetry Test.

Application and Test Information

Figure 5. Common Mode Output Voltage Test.

Figure 6. CAN Bus Driver Short-Circuit Test. (Note: V1 is a pulse from OV to VDD with duty cycle of 99% such that permanent dominant time-out is avoided).

Application and Test Information

Figure 7. Typical Application Connections

ORDERING INFORMATION

HI-300x PS H

PART NUMBER	LEAD FINISH
F	100% Matte Tin (Pb-free, RoHS compliant)

PART NUMBER	PACKAGE DESCRIPTION
PS	8 PIN PLASTIC NARROW BODY SOIC $(8 \mathrm{HN}):-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$.

PART NUMBER	DESCRIPTION
3000	SPLIT pin option
3001	VIO pin option

HI-300x CR H

PART NUMBER	PACKAGE DESCRIPTION
CR	8 PIN CERDIP (8D) not available Pb-free: $-55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$.

PART NUMBER	DESCRIPTION
3000	SPLIT pin option
3001	VIO pin option

REVISION HISTORY

P/N	Rev	Date	Description of Change
DS3000H	New	$12 / 05 / 12$	Initial Release

8-PIN PLASTIC SMALL OUTLINE (SOIC) - NB inches (millimeters) (Narrow Body)

$\frac{.050}{(1.27)} \mathrm{BSC}$

BSC $=$ "Basic Spacing between Centers" is theoretical true position dimension and has no tolerance. (JEDEC Standard 95)

8-PIN CERDIP
inches (millimeters)
Package Type: 8D

BSC = "Basic Spacing between Centers" is theoretical true position dimension and has no tolerance. (JEDEC Standard 95)

