: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

GENERAL DESCRIPTION

The HI-8200 is a quad analog CMOS switch fabricated with Sili-con-on-Insulator (SOI) technology for latch-up free operation and maximum switch isolation. High voltage gate drive is entirely created on-chip enabling +/-12V switching range from a single 3.3 V or 5 V supply. These switches are ideally suited for applications demanding low switch leakage when the power pins are $0 V$.

At $25^{\circ} \mathrm{C}$ and with VDD from 3.0 V to 5.5 V , the switch resistance (RON) is typically 8Ω. RON is independent of VDD. In a switching range of -5 V to +5 V , the maximum deviation of RON from flat is less than 5%.

These switches conduct equally well in either direction. Power down and Off state leakages are less than 10nA maximum. Charge injection is less than 10pC. Switching times are typically 180 ns to the On state and 60 ns to the Off state. The onboard charge pump allows an On/Off cycle time of 5 KHz for all four switches simultaneously before the switching range becomes restricted.

The HI-8200 provides four each normally open switches when the switch control inputs are low. The HI-8201 provides four each normally closed switches when the switch control inputs are low. The HI-8202 provides a combination of two normally closed and two normally open switches.

Industry-standard plastic package options include 20-pin TSSOP, 16-pin DIP and 16-pin QFN. Ceramic packaging is available on request. All three products are offered in both industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ and extended $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ temperature range options.

APPLICATIONS

- Avionics
- Data bus isolation
- Sample-and-Hold circuits
- Test Equipment
- Communications Systems

FEATURES

- CMOS analog switches with up to +/-12V switching range from a single 3.3 V or 5 V supply
- Low RON: 10Ω max at $25^{\circ} \mathrm{C}$
- Robust CMOS Silicon-on-Insulator (SOI) technology
- Switch nodes are open-circuit when chip is powered down
- SOI switch isolation with 1nA typical Off leakage
- ESD protection > 4KV HBM
- Fast switching time with break-before-make
- Low power
- Extended Temperature Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

PIN CONFIGURATIONS (Top Views)

HI-8200PCx
16-pin $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ Chip-scale package (see page 6 for additional package configurations)

PRODUCT OPTIONS								
PART TYPE	IN1	Switch 1	IN2	Switch 2	IN3	Switch 3	IN4	Switch 4
HI-8200	0	Open	0	Open	0	Open	0	Open
	1	Closed	1	Closed	1	Closed	1	Closed
HI-8201	0	Closed	0	Closed	0	Closed	0	Closed
	1	Open	1	Open	1	Open	1	Open
HI-8202	0	Open	0	Closed	0	Closed	0	Open
	1	Closed	1	Open	1	Open	1	Closed

PIN DESCRIPTIONS

SIGNAL	FUNCTION	DESCRIPTION
IN1	Logic Input	HI-8200 and HI-8202 are normally Open when input Low
S1A	Switch Node	Switch 1 Node
S1B	Switch Node	Switch 1 Node
V-	CAP -	Bulk storage capacitor. Add 0.1uF ceramic capacitor to GND. (20V or higher).
GND	Supply	Reference Ground
S4B	Switch Node	Switch 4 Node
S4A	Switch Node	Switch 4 Node
IN4	Logic Input	HI-8200 and HI-8202 are normally Open when input Low
IN3	Logic Input	HI-8201 and HI-8202 are normally Closed when input Low
S3A	Switch Node	Switch 3 Node
S3B	Switch Node	Switch 3 Node
VLOGIC	Supply	3.3V or 5.0V Logic supply
V+	CAP +	Bulk storage capacitor. Add 0.1uF ceramic capacitor to GND. (20V or higher).
S2B	Switch Node	Switch 2 Node
S2A	Switch Node	Switch 2 Node
IN2	Logic input	HI-8201 and HI-8202 are normally Closed when input Low

NOTE: V+ and V - pins are only to be used for connection of bulk storage capacitors and MUST NOT be loaded.

Typical Ron as a function of Vswitch and Temperature (10 mA switch current, Vsupply $=+3.3 \mathrm{~V}$)

ABSOLUTE MAXIMUM RATINGS

(Voltages referenced to GND $=0 \mathrm{~V}$)

Supply Voltage, VLOGIC ...7.0	Continuous Power Dissipation ($\mathrm{TA}=70^{\circ} \mathrm{C}$):	
Switch Current (either direction, DC): ... 20 mA	SO Package (derate $6.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$)................ 696 mW	
Peak Switch Current (1 ms pulse, 10\% duty cycle max.)................100mA	Plastic DIP (derate $10.53 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$)................... 842 mWThin QFN (derate $21.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$) 1702 mW	
Digital Input Voltage (IN1-4):................................-0.3V to VLocic + 0.3V		
	Storage Temperature Range:	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
	Soldering Temperature:	(Ceramic)..................... 60 sec. at $+300^{\circ} \mathrm{C}$ (Plastic- -leads)......... 10 sec. at $+280^{\circ} \mathrm{C}$
Maximum Junction Temperature .. $175^{\circ} \mathrm{C}$		(Plastic - body) $+260^{\circ} \mathrm{C}$ Max.

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only.
Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied.
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

VLOGIC $=3.3 \mathrm{~V}$ or 5.0 V , GND $=0 \mathrm{~V}$. Operating temperature range (unless otherwise noted).

PARAMETER	SYMBOL	CONDITIONS	FIGURE	MIN	TYP	MAX	UNIT	
SWITCH PARAMETERS								
Switch Resistance, $25^{\circ} \mathrm{C}$, 10 mA	Ron	$12 \mathrm{~V}>\mathrm{Vs}>-12 \mathrm{~V}$	1	6	8	10	Ω	
Leakage - (open circuit and power down)	\|ISWLEAK		$12 \mathrm{~V}>\mathrm{Vs}>-12 \mathrm{~V}$	2		1	10	nA
Leakage - (open circuit and power on)	\|ISWLEAKp		$12 \mathrm{~V}>\mathrm{Vs}>-12 \mathrm{~V}$	2		1	100	nA
LOGIC INPUTS								
Input High Voltage	VIH			75\%			V	
Input Low Voltage	VIL					25\%	V	
Input Current	IIH IIL	80K Ohm pulldown VLogic $=3.3 \mathrm{~V}$ Vlogic $=5.0 \mathrm{~V}$			$\begin{aligned} & 45 \\ & 65 \end{aligned}$	0.5	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	
SUPPLY								
VLogic Operating Range	VDD			3.0		5.5	V	
VLogic Operating Current	IDD	inputs static VLogic $=3.3 \mathrm{~V}$ Vlogic $=5.0 \mathrm{~V}$				$\begin{aligned} & 1.0 \\ & 2.5 \end{aligned}$	$\underset{\mathrm{mA}}{\mathrm{~mA}}$	
DYNAMIC PARAMETERS								
Max Vin On/Off cycling	fcycle	any load				5	Khz	
Turn On Time	Ton		3		180	250	ns	
Turn Off time	Toff		3		80	150	ns	
Break-Before-Make Time	TD		4	40	80		ns	
Charge Injection	Q	$\mathrm{Vs}=0 \mathrm{~V}, \mathrm{Rs}=0 \Omega, 25^{\circ} \mathrm{C}$	5		-20		pC	
Off Isolation	RR	$\mathrm{f}=1 \mathrm{MHz}, 25^{\circ} \mathrm{C}$	6		65		dB	
Crosstalk	CR	$\mathrm{f}=1 \mathrm{MHz}, 25^{\circ} \mathrm{C}$	7		90		dB	
Capacitance	Coff Con	Switch Off, $25^{\circ} \mathrm{C}$ Switch On, $25^{\circ} \mathrm{C}$	$\begin{aligned} & 8 \\ & 9 \end{aligned}$		$\begin{aligned} & 15 \\ & 60 \end{aligned}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	
Charge Pump Power On	Tvon	$\begin{gathered} \mathrm{V}+\text { and } \mathrm{V}-=+/-14.5 \mathrm{~V} \\ \mathrm{~V} \text { Logic }=5.0 \mathrm{~V} \end{gathered}$	10	10			ms	

TEST CIRCUITS

Figure 1-On Resistance

Figure 2-Off Leakage

Figure 3. Switching Times

Figure 4. Break-Before-Make Time Delay (HI-8202)

Figure 5. Charge Injection

Figure 6-Off Isolation

Figure 8 - Off Capacitance

Figure 10. Charge Pump Power On

Additional package configurations

ORDERING INFORMATION

HI - 820x

REVISION HISTORY

P/N	Rev	Date	Description of Change
DS8200	New	$10 / 18 / 12$	Initial Release
	A	$10 / 22 / 12$	Remove 1MOhm resistor to GND from test circuits. Correct typo in Pin Descriptions
	B	$12 / 18 / 12$	Clarify that $V+/ V$ - pins must not be loaded. Used only for connection of bulk storage caps.
	C	$04 / 18 / 16$	Add leakage spec for power on condition.

20-PIN PLASTIC TSSOP

inches (millimeters)
Package Type: 20HS

is Basic Spacing is theoretical true position dimension and has no tolerance. (JEDEC Standard 95)

16-PIN PLASTIC CHIP-SCALE PACKAGE

millimeters

Package Type: 16PCS1

0.75 ± 0.05
(0.03 ± 0.002)

BSC $=$ "Basic Spacing between Centers" is theoretical true position dimension and has no tolerance. (JEDEC Standard 95)

16-PIN PLASTIC DIP

inches (millimeters)

