: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Dual, SPDT CMOS Analog Switch

The HI-303 switch is a monolithic device fabricated using CMOS technology and the Intersil dielectric isolation process. This switch features break-before-make switching, low and nearly constant ON resistance over the full analog signal range, and low power dissipation.

The $\mathrm{HI}-303$ is TTL compatible and has a logic " 0 " condition with an input less than 0.8 V and a logic " 1 " condition with an input greater than 4 V . (See pinouts for switch conditions with a logic "1" input.)

Functional Diagram

Pinout Switch States Shown For A Logic "1" Input HI-303 (PDIP, CERDIP, SOIC) TOP VIEW

LOGIC	SW1, SW2	SW3, SW4
0	OFF	ON
1	ON	OFF

Features

- Analog Signal Range ($\pm 15 \mathrm{~V}$ Supplies) $\pm 15 \mathrm{~V}$
- Low Leakage at $25^{\circ} \mathrm{C}$. 40pA
- Low Leakage at $125^{\circ} \mathrm{C}$. 1nA
- Low On Resistance at $25^{\circ} \mathrm{C}$. 35Ω
- Break-Before-Make Delay . 60ns
- Charge Injection . 30pC
- TTL, CMOS Compatible
- Symmetrical Switch Elements
- Low Operating Power (Typ) 1.0 mW
- Pb-Free Available (RoHS Compliant)

Applications

- Sample and Hold (i.e., Low Leakage Switching)
- Op Amp Gain Switching (i.e., Low On Resistance)
- Portable, Battery Operated Circuits
- Low Level Switching Circuits
- Dual or Single Supply Systems

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. DWG. \#
HI1-0303-2	-55 to 125	14 Ld CERDIP	F14.3
HI3-0303-5Z (See Note)	0 to 75	14 Ld PDIP (Pb-free)	E14.3
HI9P0303-9Z (See Note)	-40 to 85	14 Ld SOIC (Pb-free)	M14.15

NOTE: Intersil Pb -free products employ special Pb -free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb -free soldering operations. Intersil Pb -free products are MSL classified at Pb -free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020C.

Schematic Diagrams

Absolute Maximum Ratings	
Voltage Between Supplies ($\mathrm{V}+$ to V)	$44 \mathrm{~V}(\pm 22 \mathrm{~V})$
Digital Input Voltage	(V+) +4V to (V-) -4V
Analog Input Voltage	$(\mathrm{V}+)+1.5 \mathrm{~V}$ to ($\mathrm{V}-)^{-1.5 \mathrm{~V}}$
Typical Derating Factor	$1.5 \mathrm{~mA} / \mathrm{MHz}$ Increase in ICCOP

Operating Conditions

Temperature Range

HI-303-2	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
HI-303-5	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
HI-303-9	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance (Typical, Note 1)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	$\theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
CERDIP Package.	80	24
PDIP Package	90	N/A
SOIC Package	120	N/A
Maximum Junction Temperature		
Ceramic Packages .		$175^{\circ} \mathrm{C}$
Plastic Packages		$150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range		to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Solderin (SOIC - Lead Tips Only)		$300^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $\theta_{J A}$ is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details.

Electrical Specifications Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{I N}=$ Logic Input. V_{IN} - for Logic " 1 " $=4 \mathrm{~V}$, for Logic " 0 " $=0.8 \mathrm{~V}$. Unless Otherwise Specified

PARAMETER	$\begin{aligned} & \text { TEMP } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	-2			-5, -9			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
DYNAMIC CHARACTERISTICS								
Switch ON Time, $\mathrm{t}_{\text {ON }}$	25	-	210	300	-	210	300	ns
Switch OFF Time, toff	25	-	160	250	-	160	250	ns
Break-Before-Make Delay, topen	25	-	60	-	-	60	-	ns
Charge Injection Voltage, $\Delta \mathrm{V}$ (Note 7)	25	-	3	-	-	3	-	mV
OFF Isolation (Note 6)	25	-	60	-	-	60	-	dB
Input Switch Capacitance, $\mathrm{C}_{\text {S(OFF) }}$	25	-	16	-	-	16	-	pF
Output Switch Capacitance, $\mathrm{C}_{\mathrm{D} \text { (OFF) }}$	25	-	14	-	-	14	-	pF
Output Switch Capacitance, $\mathrm{C}_{\mathrm{D}(\mathrm{ON})}$	25	-	35	-	-	35	-	pF
Digital Input Capacitance, $\mathrm{C}_{\text {IN }}$	25	-	5	-	-	5	-	pF
DIGITAL INPUT CHARACTERISTICS								
Input Low Level, $\mathrm{V}_{\text {INL }}$	Full	-	-	0.8	-	-	0.8	V
Input High Level, $\mathrm{V}_{\text {INH }}$ (Note 10)	Full	4	-	-	4	-	-	V
Input Leakage Current (Low), IINL (Note 5)	Full	-	-	1	-	-	1	$\mu \mathrm{A}$
Input Leakage Current (High), I INH (Note 5)	Full	-	-	1	-	-	1	$\mu \mathrm{A}$
ANALOG SWITCH CHARACTERISTICS								
Analog Signal Range	Full	-15	-	+15	-15	-	+15	V
ON Resistance, ron (Note 2)	25	-	35	50	-	35	50	Ω
	Full	-	40	75	-	40	75	Ω
OFF Input Leakage Current, $\mathrm{I}_{\text {S(OFF) }}$ (Note 3)	25	-	0.04	1	-	0.04	5	nA
	Full	-	1	100	-	0.2	100	nA
OFF Output Leakage Current, $\mathrm{I}_{\mathrm{D}(\mathrm{OFF})}$ (Note 3)	25	-	0.04	1	-	0.04	5	nA
	Full	-	1	100	-	0.2	100	nA
ON Leakage Current, $\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$ (Note 4)	25	-	0.03	1	-	0.03	5	nA
	Full	-	0.5	100	-	0.2	100	nA

Electrical Specifications Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{I N}=$ Logic Input. $\mathrm{V}_{I N}$ - for Logic " 1 " $=4 \mathrm{~V}$, for Logic " 0 " $=0.8 \mathrm{~V}$. Unless Otherwise Specified (Continued)

PARAMETER	TEMP $\left({ }^{\circ} \mathrm{C}\right)$	-2			-5, -9			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
POWER SUPPLY CHARACTERISTICS								
Current, I+ (Note 8)	25	-	0.09	0.5	-	0.09	0.5	mA
	Full	-	-	1	-	-	1	mA
Current, I- (Note 8)	25	-	0.01	10	-	0.01	100	$\mu \mathrm{A}$
	Full	-	-	100	-	-	-	$\mu \mathrm{A}$
Current, I+ (Note 9)	25	-	0.01	10	-	0.01	100	$\mu \mathrm{A}$
	Full	-	-	100	-	-	-	$\mu \mathrm{A}$
Current, I- (Note 9)	25	-	0.01	10	-	0.01	100	$\mu \mathrm{A}$
	Full	-	-	100	-	-	-	$\mu \mathrm{A}$

NOTES:

2. $\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=\mp 10 \mathrm{~mA}$. On resistance derived from the voltage measured across the switch under these conditions.
3. $\mathrm{V}_{\mathrm{S}}= \pm 14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 14 \mathrm{~V}$.
4. $V_{S}=V_{D}= \pm 14 \mathrm{~V}$.
5. The digital inputs are diode protected MOS gates and typical leakages of 1 nA or less can be expected.
6. $\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{f}=500 \mathrm{kHz}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}$.
7. $V_{S}=0 V, C_{L}=10 n F$, Logic Drive $=5 \mathrm{~V}$ pulse. Switches are symmetrical; S and D may be interchanged. Charge Injection $=Q=C_{L} \times \Delta V$.
8. $\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}$ (one input, all other inputs $=0 \mathrm{~V}$).
9. $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$ (all inputs).
10. To drive from DTL/TTL circuits, pullup resistors to +5 V supply are recommended.

Test Circuits and Waveforms

FIGURE 1A. TEST CIRCUIT

FIGURE 1B. MEASUREMENT POINTS

FIGURE 1. SWITCH ton AND toff

FIGURE 2A. TEST CIRCUIT

FIGURE 2C. $\mathrm{V}_{\text {ANALOG }}=10 \mathrm{~V}$

FIGURE 2E. $\mathrm{V}_{\text {ANALOG }}=\mathrm{ov}$

FIGURE 2B. TTL LOGIC INPUT

FIGURE 2D. $\mathrm{V}_{\text {ANALOG }}=5 \mathrm{~V}$

FIGURE 2F. $V_{\text {ANALOG }}=-5 \mathrm{~V}$

Test Circuits and Waveforms (Continued)

FIGURE 2G. $\mathrm{V}_{\text {ANALOG }}=-10 \mathrm{~V}$
NOTE:
11. If $R_{G E N}, R_{L}$ or C_{L} is increased, there will be proportional increases in rise and/or fall $R C$ times.

FIGURE 2. SWITCHING WAVEFORMS FOR VARIOUS ANALOG INPUT VOLTAGES

FIGURE 3A. TEST CIRCUIT

FIGURE 3B. MEASUREMENT POINTS

FIGURE 3. BREAK-BEFORE-MAKE DELAY (tOPEN)

Typical Performance Curves

FIGURE 4. $r_{\text {DS(ON) }}$ vs V_{D}

FIGURE 5. $\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$ vs V_{D}

Typical Performance Curves (Continued)

FIGURE 6. DEVICE POWER DISSIPATION vS SWITCHING FREQUENCY (SINGLE LOGIC INPUT)

FIGURE 8. $\mathbf{I}_{\mathrm{S}(\mathrm{OFF})}$ OR $\mathrm{I}_{\mathrm{D}(\mathrm{OFF})}$ vs TEMPERATURE*

FIGURE 7. OFF ISOLATION vs FREQUENCY

FIGURE 9. ${ }^{\mathrm{D}(\mathrm{ON})}$ vs TEMPERATURE*

* The net leakage into the source or drain is the N-Channel leakage minus the P-Channel leakage. This difference can be positive, negative or zero depending on the analog voltage and temperature, and will vary greatly from unit to unit.

FIGURE 10. OUTPUT ON CAPACITANCE vs DRAIN VOLTAGE

FIGURE 11. DIGITAL INPUT CAPACITANCE vs INPUT VOLTAGE

Typical Performance Curves (Continued)

FIGURE 12. SWITCHING TIME vs TEMPERATURE

FIGURE 14. SWITCHING TIME AND BREAK-BEFORE-MAKE TIME vs POSITIVE SUPPLY VOLTAGE

FIGURE 13. SWITCHING TIME vs NEGATIVE SUPPLY VOLTAGE

FIGURE 15. INPUT SWITCHING THRESHOLD vs POSITIVE SUPPLY VOLTAGE

Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make sure that you have the latest revision.

DATE	REVISION	CHANGE
October 1, 2015	FN3125.11	- Updated Ordering Information Table on page 1. - Added Revision History. - Added About Intersil Verbiage. - Updated POD M14.15 to latest revision changes are as follow: Added land pattern and moved dimensions from table onto drawing.

About Intersil

Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.

For the most updated datasheet, application notes, related documentation and related parts, please see the respective product information page found at www.intersil.com.

You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.
Reliability reports are also available from our website at www.intersil.com/support.

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9001 quality systems.
Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

[^0]For information regarding Intersil Corporation and its products, see www.intersil.com

Dual-In-Line Plastic Packages (PDIP)

-B-

NOTES:

1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
4. Dimensions $A, A 1$ and L are measured with the package seated in JEDEC seating plane gauge GS-3.
5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25 mm).
6. E and e_{A} are measured with the leads constrained to be perpendicular to datum $-\mathrm{C}-$.
7. e_{B} and e_{C} are measured at the lead tips with the leads unconstrained. e_{C} must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch $(0.25 \mathrm{~mm})$.
9. N is the maximum number of terminal positions.
10. Corner leads (1, N,N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E 42.6 will have a B1 dimension of $0.030-0.045$ inch (0.761.14 mm).

E14.3 (JEDEC MS-001-AA ISSUE D) 14 LEAD DUAL-IN-LINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS					
	MIN	MAX	MIN	MAX				
A	-	0.210	-	5.33	4			
A1	0.015	-	0.39	-	4			
A2	0.115	0.195	2.93	4.95	-			
B	0.014	0.022	0.356	0.558	-			
B1	0.045	0.070	1.15	1.77	8			
C	0.008	0.014	0.204	0.355	-			
D	0.735	0.775	18.66	19.68	5			
D1	0.005	-	0.13	-	5			
E	0.300	0.325	7.62	8.25	6			
E1	0.240	0.280	6.10	7.11	5			
e	$0.100 ~ B S C$	$2.54 ~ B S C$	-					
e_{A}	$0.300 ~ B S C$	$7.62 ~ B S C$	6					
e_{B}	-	0.430	-	10.92	7			
L	0.115	0.150	2.93	3.81	4			
N	14			14				9

Rev. 0 12/93

Ceramic Dual-In-Line Frit Seal Packages (CERDIP)

NOTES:

1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
2. The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
3. Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness.
4. Corner leads ($1, N, N / 2$, and $N / 2+1$) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2.
5. This dimension allows for off-center lid, meniscus, and glass overrun.
6. Dimension Q shall be measured from the seating plane to the base plane.
7. Measure dimension S1 at all four corners.
8. N is the maximum number of terminal positions.
9. Dimensioning and tolerancing per ANSI Y14.5M - 1982.
10. Controlling dimension: INCH.

F14.3 MIL-STD-1835 GDIP1-T14 (D-1, CONFIGURATION A) 14 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.200	-	5.08	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
C	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	0.785	-	19.94	5
E	0.220	0.310	5.59	7.87	5
e	0.10	BSC		BSC	-
eA	0.30	BSC		BSC	-
eA/2	0.15	BSC		BSC	-
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.060	0.38	1.52	6
S1	0.005	-	0.13	-	7
α	90°	105°	90°	105°	-
aaa	-	0.015	-	0.38	-
bbb	-	0.030	-	0.76	-
CCC	-	0.010	-	0.25	-
M	-	0.0015	-	0.038	2, 3
N	14		14		8

Package Outline Drawing

M14.15

14 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE

Rev 1, 10/09

NOTES:

1. Dimensions are in millimeters.

Dimensions in () for Reference Only.
2. Dimensioning and tolerancing conform to AMSEY14.5m-1994.
3. Datums A and B to be determined at Datum H.
4. Dimension does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25 mm per side.
5. The pin \#1 indentifier may be either a mold or mark feature.
6. Does not include dambar protrusion. Allowable dambar protrusion shall be 0.10 mm total in excess of lead width at maximum condition.
7. Reference to JEDEC MS-012-AB.

TYPICAL RECOMMENDED LAND PATTERN

[^0]: Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

