

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

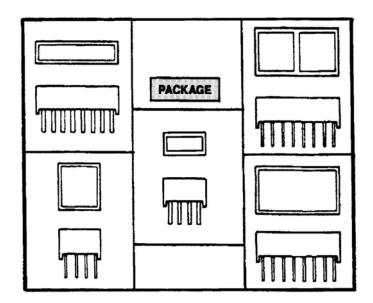
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



HIGH EFFICIENCY RED HLMP-2300/2600 SERIES YELLOW HLMP-2400/2700 SERIES HIGH EFFICIENCY GREEN HLMP-2500/2800 SERIES

DESCRIPTION

These LED Light Bar series are bright, large emitting area, rectangular devices that are designed for backlighting legend/message annunciators.

These devices are offered in single-in-line and dual-in-line packages that contain single or segmented light-emitting area. Each package style is offered in High Efficiency Red, Yellow, or Green emission color.

FEATURES

- Large area, uniform, bright light-emitting surfaces
- Select from six package styles
- Choice of three colors
- Categorized for intensity and color
- X-Y stackable
- Easily driven with I.C.s
- Alternate source for popular backlighting components

MODEL	NUMBERS			
PART NO.	COLOR	DESCRIPTION	PACKAGE	PIN OUT
HLMP-2300 HLMP-2400 HLMP-2500	High Efficiency Red Yellow High Efficiency Green	2 LED Single-in-line 0.35 in.×0.15 in. Area	Α	Α
HLMP-2350 HLMP-2450 HLMP-2550	High Efficiency Red Yellow High Efficiency Green	4 LED Single-in-line 0.75 in.×0.15 in. Area	В	В
HLMP-2655 HLMP-2755 HLMP-2855	High Efficiency Red Yellow High Efficiency Green	4 LED Dual-in-line 0.35 in.×0.35 in. Area	С	С
HLMP-2670 HLMP-2770 HLMP-2870	High Efficiency Red Yellow High Efficiency Green	Dual 0.35 in. ×0.35 in. Area Dual-in-line package	D	D
HLMP-2685 HLMP-2785 HLMP-2885	High Efficiency Red Yellow High Efficiency Green	8 LED 0.35 in.×0.75 in. Area Dual-in-line package	E	D

PARAMETER		The state of the s	HLMP						TEST
		SYMBOL	-2300	-2350	-2655	-2670	-2685	UNIT	CONDITIONS
Luminous	min.		6.0	13	13	13	22	mcd	I _F =20 mA
	typ.	l _v	23	45	43	45	80	mcd	$I_F=20 \text{ mA}$
Intensity	typ.		30	50	50	50	100	mcd	I _F =60 mA pK, 1:3 D.F.
Forward	max.	$V_{\scriptscriptstyle F}$	2.6	2.6	2.6	2.6	2.6	V	I_F =20 mA
voltage	typ.	VF	2.0	2.0	2.0	2.0	2.0	V	
Peak wavelength	typ.	λ_{p}	630	630	630	630	630	nm	
Dominant wavelength	typ.	λ_{d}	626	626	626	626	626	nm	
Capacitance	typ.	С	45	45	45	45	45	pF	$V_F=0$, $f=1$ MHz
Reverse voltage	min.	V_{R}	6	6	6	6	6	·v	I _R =100 μA
Thermal resistance	typ.	θ_{JL}	150	150	150	150	150	°C/W/ LED chip	

PARAMETER					HLMP		TEST		
		SYMBOL	-2400	-2450	-2755	-2770	-2785	UNIT	CONDITIONS
Luminous	min.		6	13	13	13	26	mcd	I _F =20 mA
Luminous Intensity	typ.	l _v	20	38	35	35	70	mcd	I _F =20 mA
	typ.		33	60	60	60	115	mcd	I _F =60 mA pK, 1:3 D.F.
Forward	max.	$V_{\scriptscriptstyle F}$	2.6	2.6	2.6	2.6	2.6	V	I _F =20 mA
voltage	typ.	VF	2.1	2.1	2.1	2.1	2.1	V	
Peak wavelength	typ.	$\lambda_{_{\mathrm{P}}}$	585	585	585	585	585	nm	
Dominant wavelength	typ.	λ_{d}	588	588	588	588	588	nm	
Capacitance	typ.	C	35	35	35	35	35	pF	$V_F=0$, $f=1$ MHz
Reverse voltage	min.	V_{R}	6	6	6	6	6	v	I _R =100 μA
Thermal resistance	typ.	θ_{JL}	150	150	150	150	150	°C/W/ LED chip	

PARAMETER			HLMP				1	TEST	
		SYMBOL	-2500	-2550	-2855	-2870	-2885	UNIT	CONDITIONS
Luminous	min.	55.00	5	11	11	11	22	mcd	I _F =20 mA
Intensity	typ.	I _v	25	50	50	50	100	mcd	$I_F=20 \text{ mA}$
	typ.		38	75	75	75	150	mcd	I _F =60 mA pK, 1:3 D.F
Forward	max.	V	2.6	2.6	2.6	2.6	2.6	V	I _E =20 mA
voltage	typ.	V_{F}	2.2	2.2	2.2	2.2	2.2	V	1 _F =20 mA
Peak wavelength	typ.	λ_{p}	565	565	565	565	565	nm	
Dominant wavelength	typ.	$\lambda_{\scriptscriptstyle d}$	567	567	567	567	567	nm	
Capacitance	typ.	C	40	40	40	40	40	pF	$V_F=0$, $f=1$ MHz
Reverse voltage	min.	$V_{\scriptscriptstyle R}$	6	6	6	6	6	v	$I_R = 100 \mu A$
Thermal resistance	typ.	θ_{JL}	150	150	150	150	150	°C/W/ LED chip	

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES

(25°C Free Air Temperature Unless Otherwise Specified)

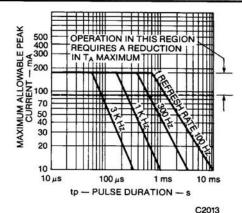


Fig. 1. Maximum Tolerable Peak Current per LED Chip vs. Pulse Duration for HLMP-23X0/-26XX/-25X0/-28XX

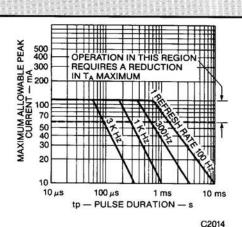


Fig. 2. Maximum Tolerable Peak Current per LED Chip vs.Pulse Duration for HLMP-24X0/-27XX Devices

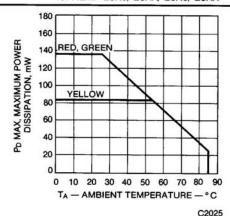


Fig. 3. Maximum Power Dissipation per LED vs. Ambient Temperature

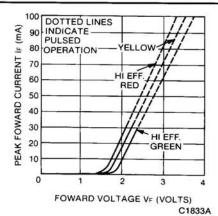


Fig. 4. Forward Current vs. Forward Voltage

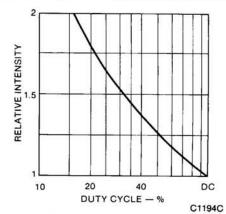


Fig. 5. Luminous Intensity vs. Duty Cycle

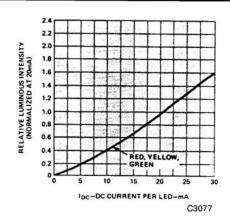
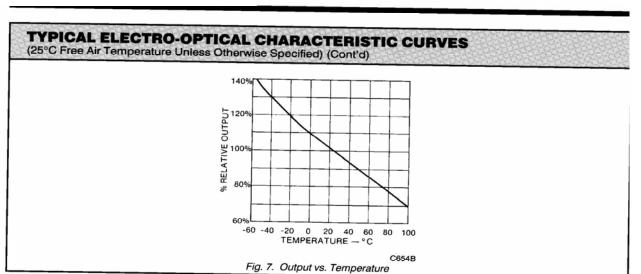
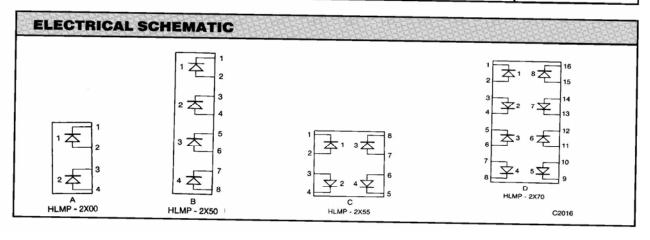




Fig. 6. Luminous Intensity vs. Forward Current

PIN	ELECTRICAL CONNECTION									
	HLMP-2X00	HLMP-2X50	HLMP-2X55	HLMP-2X70/-2X85						
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1 Cathode 1 Anode 2 Cathode 2 Anode	1 Cathode 1 Anode 2 Cathode 2 Anode 3 Cathode 3 Anode 4 Cathode 4 Anode	1 Cathode 1 Anode 2 Anode 2 Cathode 3 Cathode 3 Anode 4 Anode 4 Cathode	1 Cathode 1 Anode 2 Anode 2 Cathode 3 Cathode 3 Anode 4 Anode 4 Cathode 5 Cathode 6 Anode 6 Cathode 7 Cathode 7 Anode 8 Anode 8 Cathode						

LED LIGHT BARS

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- which, (a) are intended for surgical implant into the body, support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 1. Life support devices or systems are devices or systems 2. A critical component in any component of a life support device or system whose failure to perform can be or (b) reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.