

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

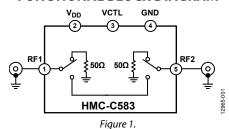
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

0.1 GHz to 40 GHz, SPST Switch

Data Sheet HMC-C583

FEATURES

7 dB typical insertion loss
Single positive control line
50 dB typical isolation
Input third-order intercept (IP3): 40 dBm
CMOS-compatible control
Nonreflective topology
Hermetically sealed module
Field replaceable K-type connectors
Operating temperature: -55°C to +85°C


APPLICATIONS

Base station infrastructure
Fiber optics and broadband telecommunications
Microwave radios and VSATs
Military radios, radars, and electronic counter measures (ECM)
Test instrumentation

GENERAL DESCRIPTION

The HMC-C583 is a 0.1 GHz to 40 GHz, gallium arsenide (GaAs), pseudomorphic high electron mobility transfer (pHEMT), IC single-pole, single-throw (SPST) switch housed in a miniature hermetic module. This wideband switch features 7 dB typical insertion loss, 50 dB typical isolation, and 40 dBm input IP3.

FUNCTIONAL BLOCK DIAGRAM

The switching on/off time is 10 ns typical. A single control voltage input, toggled between 0 V and 5 V, selects the switch state. Removable K-type connectors can be detached to allow direct connection of the input/output pins of the module to a microstrip or coplanar circuit.

Trademarks and registered trademarks are the property of their respective owners.

HMC-C583* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖵

View a parametric search of comparable parts.

DOCUMENTATION

Data Sheet

• HMC-C583: 0.1 GHz to 40 GHz, SPST Switch Data Sheet

REFERENCE MATERIALS •

Press

 ADI Expands Portfolio of High Performance RF and Microwave Standard Modules to Facilitate Rapid Prototyping and Faster Time to Market

DESIGN RESOURCES 🖳

- HMC-C583 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- · Symbols and Footprints

DISCUSSIONS

View all HMC-C583 EngineerZone Discussions.

SAMPLE AND BUY 🖵

Visit the product page to see pricing options.

TECHNICAL SUPPORT 🖳

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK 🖳

Submit feedback for this data sheet.

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

TABLE OF CONTENTS

Features	1
Applications	1
Functional Block Diagram	1
General Description	1
Revision History	
Specifications	
Absolute Maximum Ratings	
ESD Caution	

Thi Configuration and Function Descriptions	••
Interface Schematics	
Typical Performance Characteristics	٠.
Theory of Operation	.7
Applications Information	3.
Outline Dimensions	و.
Ordering Guide	c

REVISION HISTORY

9/2016—Revision 0: Initial Version

SPECIFICATIONS

 V_{DD} = 5 V, VCTL = 0 V or 5 V, T_A = 25°C, unless otherwise noted.

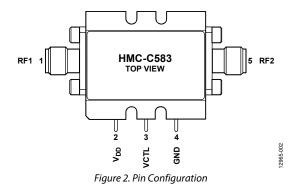
Table 1.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
INSERTION LOSS			7	10	dB	0.1 GHz to 40 GHz
ISOLATION						Includes insertion loss
		40	50		dB	0.1 GHz to 40 GHz
INPUT POWER FOR 0.1 dB COMPRESSION	P0.1dB					
			5		dBm	0.1 GHz to 0.5 GHz
			21		dBm	0.5 GHz to 40 GHz
INPUT THIRD-ORDER INTERCEPT	IP3					
			20		dBm	0.1 GHz to 2 GHz
			40		dBm	2 GHz to 40 GHz
RETURN LOSS			10		dB	0.1 GHz to 40 GHz
SUPPLY INPUT	V _{DD}	4.5	5	5.5	V	
CONTROL INPUTS						
Input Voltage						
High	V _{INH}		$3.5 \text{ to } V_{\text{DD}}$		V	
Low	V _{INL}		0 to 1.5		V	
Input Current	I _{IN}		±20		μΑ	$V_{IN} = 0 V \text{ or } V_{DD}$
SWITCHING CHARACTERISTICS						
Rise Time/Fall Time	trise/tfall		1		ns	10%/90% radio frequency (RF)
On Time/Off Time	ton/toff		10		ns	50% VCTL to 10%/90% RF

ABSOLUTE MAXIMUM RATINGS

Table 2.

- ** *	
Parameter	Rating
Supply Input (VDD)	5.8 V
Control Voltage (VCTL)	$V_{DD} \pm 0.5 V$
RF Input Power	
0.1 GHz to 0.5 GHz	5 dBm
0.5 GHz to 2 GHz	18 dBm
2 GHz to 40 GHz	25 dBm
Hot Switch Power Level	
0.1 GHz to 0.5 GHz	3 dBm
0.5 GHz to 2 GHz	16 dBm
2 GHz to 40 GHz	23 dBm
Operating Temperature Range	−55°C to +85°C
Storage Temperature Range	−65°C to +150°C
ESD Rating, Human Body Model (HBM)	Class 1A (>250 V)


Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	RF1	RF Input/Output 1. This pin is dc-coupled and matched to 50 Ω . Blocking capacitors are required if the RF line potential is not equal to 0 V dc.
2	V_{DD}	Positive Supply Voltage, 5 V DC.
3	VCTL	Control Pin.
4	GND	Power Supply Ground.
5	RF2	RF Input/Output 2. This pin is dc-coupled and matched to 50 Ω . Blocking capacitors are required if the RF line potential is not equal to 0 V dc.

INTERFACE SCHEMATICS

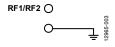


Figure 3. RF1/RF2 Interface Schematic

Figure 4. GND Interface Schematic

Figure 5. VCTL Interface Schematic

TYPICAL PERFORMANCE CHARACTERISTICS

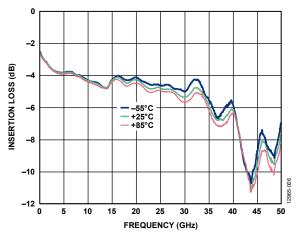


Figure 6. Insertion Loss vs. Frequency at Various Temperatures

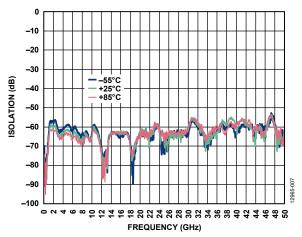


Figure 7. Isolation vs. Frequency at Various Temperatures

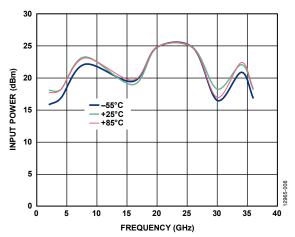


Figure 8. Input 0.1 dB Compression (Low Frequency)

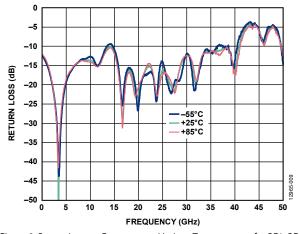


Figure 9. Return Loss vs. Frequency at Various Temperatures for RF1, RF2

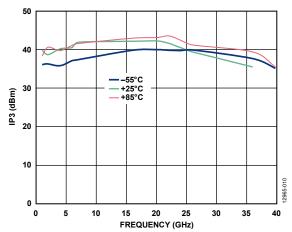


Figure 10. IP3 vs. Frequency at Various Temperatures

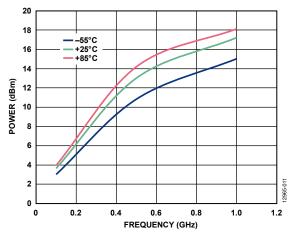


Figure 11. Input 0.1 dB Compression (High Frequency)

THEORY OF OPERATION

Applying a TTL-level voltage to the VCTL pin provides an insertion loss between the RF1 and RF2 connectors from 7 dB typical to 10 dB typical. When the HMC-C583 is in a high insertion loss state, both the RF1 and RF2 pins are internally terminated to 50 $\Omega.$

The low state level is a voltage between 0 V and 1.5 V, and the high state level is a voltage between 3.5 V and $V_{\rm DD}.$

Table 4.

VCTL Level	Typical Insertion Loss Level (dB)			
Low	7			
High	50			

APPLICATIONS INFORMATION

In Figure 12, the HMC-C583 makes an RF pulse modulator. In this application circuit, the HMC-C583 modulates the amplitude of the output of the synthesized RF signal generator.

This type of circuit can create modulated RF signals for various applications, which is only one of the many applications of the HMC-C583.

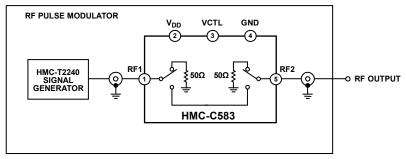
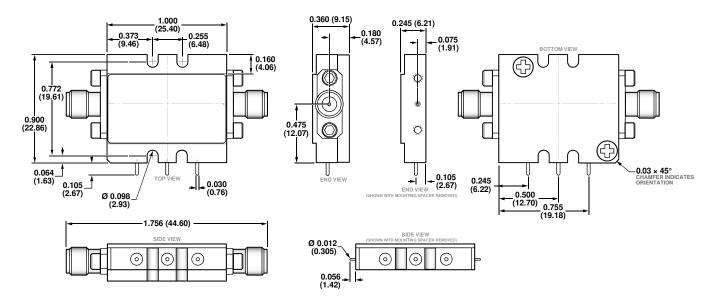



Figure 12. Typical Application Circuit

OUTLINE DIMENSIONS

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 13. 5-Lead Module with Connector Interface [MODULE]
(ML-5-1)
Dimensions shown in inches and (millimeters)

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
HMC-C583	−55°C to +85°C	5-Lead Module with Connector Interface [MODULE]	ML-5-1

¹ This is an RoHS compliant part.

09-28-2015-A