imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

v03.1113

Features

- Crest Factor (Peak-to-Average Power Ratio) Measurement
- Envelope-to-Average Power Ratio Measurement
- Dual channel and channel difference output ports
- Excellent Channel Matching and Channel Isolation
- RF Signal Wave Shape & Crest Factor Independent

Typical Applications

- Log -> Root Mean Square (RMS) Conversion
- Transmitter Power Control
- Receiver Automatic Gain Control
- Antenna VSWR Monitor

Functional Diagram

DUAL RMS POWER DETECTOR DC - 3.9 GHz

- Supports Controller Mode
- ± 1 dB Detection Accuracy to 3.9 GHz
- Input Dynamic Range -55 dBm to +15 dBm
- +5V Operation from -40° C to +85° C
- Excellent Temperature Stability
- Integrated Temperature Sensor
- Power-Down Mode
- 32 Lead 5x5mm SMT Package: 25mm²
- Received Signal Strength Indication (RSSI)
- Transmitter Signal Strength Indication (TSSI)
- Dual Channel wireless infrastructure radio

RMS & Envelope Response to WCDMA 4 Carrier with -20dBm RF Input @ 0.9 GHz

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

11

POWER DETECTORS - SMT

HMC1030* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

• HMC1030LP5E Evaluation Board

DOCUMENTATION

Data Sheet

HMC1030 Data Sheet

REFERENCE MATERIALS

Quality Documentation

- HMC Legacy PCN: LP6CE and LP6GE QFN Alternate assembly source
- Package/Assembly Qualification Test Report: 32L 5x5mm QFN Package (QTR: 10009 REV: 05)
- Package/Assembly Qualification Test Report: LP5 & LP5G (QTR: 2014-00150 REV: 02)
- Semiconductor Qualification Test Report: BiCMOS-A (QTR: 2013-00235)

DESIGN RESOURCES

- HMC1030 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC1030 EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

v03.1113

General Description

DUAL RMS POWER DETECTOR DC - 3.9 GHz

The HMC1030LP5E is a dual-channel RMS power detector designed for high accuracy RF power signal measurement and control applications over the 0.1 to 3.9 GHz frequency range. The device can be used with input signals having RMS values from -60 dBm to +10 dBm referenced to 50 Ohm and large crest factors with no accuracy degradation.

Each RMS detection channel is fully specified for operation up to 3.9 GHz, over a wide dynamic range of 70 dB. The HMC1030LP5E operates from a single +5V supply and provides two linear-in-dB detection outputs at the RMSA and RMSB pins with scaled slopes of 37 mV/dB. The RMSA and RMSB channel outputs provide RMS detection performance in terms of dynamic range, logarithmic linearity and temperature stability similar to Hittite's HMC1021LP4E RMS Detector. The RMSA and RMSB outputs provide a read of average input signal power, or true-RMS power. Frequency detection up to 3.9 GHz is possible, with excellent channel matching of less than 1 dB, over a wide range of input frequencies and with low temperature drift.

The HMC1030LP5E also provides "channel difference" output ports via pins OUTP and OUTN, permitting measurements of the input signal power ratio between the two power detection channels. These outputs may be used in single-ended or differential configurations. An input voltage applied to the VLVL input pin is used to set the common mode voltage reference level for OUTP and OUTN. On the Hittite evaluation board, the VLVL pin is shorted to VREF2 output to provide a nominal bias voltage of 2.5V; but any external bias voltage may be used to set VLVL.

The HMC1030LP5E features ETA and ETB pins which provide an accurate voltage output which is linearly proportional to the envelope amplitude of the RF input signal for modulation bandwidths up to 150 MHz. The high bandwidth envelope detection of the HMC1030LP5E makes it ideal for detecting broadband and high crest factor RF signals commonly used in CDMA2000, WCDMA, and LTE systems. Additionally, the instantaneous envelope output can be used to create fast, excessive RF power protection, PA linearization, and efficiency enhancing envelope tracking PA implementations.

The HMC1030LP5E includes a buffered PTAT temperature sensor output with a temperature scaling factor of 2 mV/°C yielding a typical output voltage of 567 mV at 0°C.

The HMC1030LP5E operates over the -40 to +85°C temperature range, and is available in a compact, 32-lead 5x5 mm leadless QFN package.

_	_	_	_						
Parameter	Тур.	Тур.	Тур.	Тур.	Тур.	Тур.	Тур.	Units	
Dynamic Range (± 1 dB measurement error) [1]									
Input Signal Frequency	100	900	1900	2200	2700	3500	3900	MHz	
RMSA Output	73	73	71	69	57	48	42	dB	
RMSB Output	74	74	72	70	63	50	44	dB	
ETA Output		19	20	20	19	19	19	dB	
ETB Output		19	20	19	19	19	19	dB	
Channel Isolations									
Input Signal Frequency	100	900	1900	2200	2700	3500	3900	MHz	
Input A to RMS_{B} Isolation (PIN _B = -45 dBm, RMS_{B} = RMSB_{INB} ±1 dB)	> 55	> 55	52	49	49			dB	
Input B to RMS_A Isolation (PIN _A = -45 dBm, RMS_A = $RMSA_{INA} \pm 1$ dB)	> 55	> 55	50	46	45			dB	
Input A to RMS _B Isolation (PIN _B = -40 dBm, RMS _B = RMSB _{INB} ±1 dB)						44	39	dB	
Input B to RMS _A Isolation (PIN _A = -40 dBm, RMS _A =RMSA _{INA} ±1 dB)						47	41	dB	
Deviation vs Temperature: (Over full temperature range -40°C to 85°C). Deviation is measured from reference, which is the same WCDMA input at 25 °C 1							dB		
Channel Mismatch	Channel Mismatch <1						dB		

Electrical Specifications I, $T_A = +25^{\circ}C$, VCCA = VCCB = VCCBS = 5V, Sci3 = Sci1 = 0V,

Sci2= 5V, Unless Otherwise Noted

[1] With WCDMA 4 Carrier (TM1-64 DPCH)

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v03.1113

DUAL RMS POWER DETECTOR DC - 3.9 GHz

Electrical Specifications II, *T*_A = +25 °C, *VCCA* = *VCCB* = *VCCBS* = 5*V*, *Sci3*= *Sci1* = 0*V*, *Sci2* = 5*V*, *Unless Otherwise Noted*

Parameter	Тур.	Тур.	Тур.	Тур.	Тур.	Тур.	Тур.	Units
Input Signal Frequency	100	900	1900	2200	2700	3500	3900	MHz
Modulation Deviation (Output deviation from reference, which is measured with CW input at equivalent input signal power)								
WCDMA 4 Carrier (TM1-64 DPCH) at +25 °C	0.1	0.1	0.1	0.1	0.1	0.1	0.1	dB
WCDMA 4 Carrier (TM1-64 DPCH) at +85 °C	0.2	0.2	0.2	0.2	0.2	0.2	0.2	dB
WCDMA 4 Carrier (TM1-64 DPCH) at -40 °C	0.2	0.2	0.2	0.2	0.2	0.2	0.2	dB
RMSA Logarithmic Slope and Intercept [1]						•		
Logarithmic Slope	35.5	38.5	37.3	38.2	40.3	45.8	49.9	mV/dB
Logarithmic Intercept	-66.4	-65.8	-63.4	-62	-58.9	-53	-49.5	dBm
Max. Input Power at ±1 dB Error	10	10	10	10	1	-3	-5	dBm
Min. Input Power at ±1 dB Error	-62	-62	-60	-58	-56	-51	-47	dBm
RMSB Logarithmic Slope and Intercept [1]								
Logarithmic Slope	34.7	34.9	36.2	37	38.8	43.6	47.2	mV/dB
Logarithmic Intercept	-67.5	-67	-65	-63.5	-60.7	-55.2	-51.7	dBm
Max. Input Power at ±1 dB Error	10	10	10	10	1	-3	-5	dBm
Min. Input Power at ±1 dB Error	-64	-64	-62	-61	-58	-53	-49	dBm
ETA Linear Slope and Intercept								
Linear Slope		14.3	12.3	11.8	10.5	9.1	8.4	V/V
Linear Intercept		-65.5	-75.8	-79	-88.2	-102.6	-111.32	mV
Max. Input Power at ±1 dB Error		-12	-10	-9	-9	-8	-8	dBm
Min. Input Power at ±1 dB Error		-31	-30	-29	-28	-27	-27	dBm
ETB Linear Slope and Intercept								
Linear Slope		14.5	12.6	12.2	11.1	9.7	8.9	V/V
Linear Intercept		-64.1	-73.7	-76.1	-82.9	-95.1	-103.7	mV
Max. Input Power at ±1 dB Error		-12	-10	-10	-9	-8	-8	dBm
Min. Input Power at ±1 dB Error		-31	-30	-29	-28	-27	-27	dBm

11

[1] With WCDMA 4 Carrier (TM1-64 DPCH)

DC - 3.9 GHz

v03.1113

RMSA vs. Pin with Different Modulations @ 1900 MHz^[1]

RMSA Error vs. Pin with Different Modulations @ 1900 MHz^[1]

RMSB vs. Pin with Different Modulations @ 1900 MHz^[1]

DUAL RMS POWER DETECTOR

RMSB Error vs. Pin with Different Modulations @ 1900 MHz^[1]

Electrical Specifications III,

T_A = +25 °C, VCCA = VCCB = VCCBS = 5V, Sci3 = Sci1 = 0V, Sci2 = 5V, Unless Otherwise Noted

Parameter	Conditions	Min.	Тур.	Max.	Units	
Single-Ended Input Configuration	ingle-Ended Input Configuration					
Input Network Return Loss	up to 4 GHz		> 15		dB	
Input Resistance between INPA and INNA	Between pins 2 and 3		110		Ohm	
Input Resistance between INPB and INNB	Between pins 6 and 7		110		Ohm	
Input Voltage Range	VDIFFINA = VINPA - VINNA and VDIFFINB = VINPB-VINNB			2.25	V	
RMS [A,B] Output						
Output Voltage Range			0.1 to 3		V	
Open-loop Output Voltage Range	RMS-VSET disconnected for control applications		0.4 to Vcc-1		V	
Source/Sink Current Compliance	Measured with 0.9GHz input RF signal at -25 dBm power		8/1.98		mA	
Output Slew Rate (rise/fall)	Sci3=Sci2=Sci1=0V, Cofs=1nF		33 / 1.5		10 ⁶ V/sec	

[1] SCA1=SCA3=SCB1=SCB3=0V, SCA2=SCB2=5V

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

RoHS

HMC1030LP5E

v03.1113

DUAL RMS POWER DETECTOR DC - 3.9 GHz

Electrical Specifications III (continued),

*T*_A = +25 °*C*, *V*CCA = *V*CCB = *V*CCBS = 5*V*, *Sci*3 = *Sci*1 = 0*V*, *Sci*2 = 5*V*, *Unless Otherwise Noted*

Parameter	Conditions	Min.	Тур.	Max.	Units
ET [A, B] Outputs					
Modulation Bandwidth			100		MHz
Output Voltage Range			1 to 2.1		V
Source/Sink Current Compliance	Measured with 0.9 GHz input RF signal at -18 dBm power		8 / 2.95		mA
Output Slew Rate (rise/fall)			83.3 / 250		10 ⁶ V/sec
V _{SET} [A,B] Outputs	·				
Input Voltage Range [1]	For control applications with nominal slope/intercept settings		0.13 to 2.7		V
Input Resistance			1		kOhm
OUTP and OUTN Outputs				-	
Output Voltage Range	R _L =1k Ohm, C _L =4.7pF [1]		1 to 3.9		V
Open-loop Output Voltage Range	OUTP-FBKA and OUTN-FBKB disconnected for control applications		0.1 to Vcc-0.9		V
Source/Sink Current Compliance	Measured with 0.9 GHz input RF signal at -30 dBm power		8/2.2		mA
VLVL, Common Mode Reference Level for OUT[P	,N]				
Voltage Range	OUT[P,N]=FBK[A,B]	0		5	V
Input Resistance			6		kOhm
VREF2, Voltage Reference Output					
Output Voltage			2.43		V
Temperature Sensitivity			0.15		mV/°C
Source/Sink Current Compliance			5.5 / 2.6		mA
TEMP, Temperature Sensor Output					
Output Voltage	measured at 0°C		0.6		V
Temperature Sensitivity			2.2		mV/°C
Source/Sink Current Compliance			1.7 / 0.5		mA
SCI1-3 Inputs, ENX Logic Input, Power Down Cor	ntrol				
Input High Voltage		0.7xV _{cc}			V
Input Low Voltage				0.3xV _{cc}	V
Input Capacitance			0.5		pF
Power Supply					
Supply Voltage		4.5	5	5.5	V
Supply Current with no input power	120.6 mA nominal at -40°C; 159.5 mA nominal at 85°C		143		mA
Supply Current with 0 dBm at one channel	128 mA nominal at -40°C; 168.2 mA nominal at 85°C		151.7		mA
Supply Current with 0 dBm at both channels			160		mA
Standby Mode Supply Current			13		mA

[1] For nominal slope/intercept setting, please see application section to change this range

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v03.1113

RMSA & Error vs. Pin @ 100 MHz ^[1]

RMSA & Error vs. Pin @ 900 MHz [1]

RMSA & Error vs. Pin @ 1900 MHz [1]

[1] WCDMA Input Waveform

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

DUAL RMS POWER DETECTOR DC - 3.9 GHz

RMSB & Error vs. Pin @ 900 MHz [1]

RMSB & Error vs. Pin @ 1900 MHz ^[1]

RoHS V

v03.1113

RMSA & Error vs. Pin @ 2200 MHz [1]

RMSA & Error vs. Pin @ 2700 MHz [1]

RMSA & Error vs. Pin @ 3500 MHz [1]

[1] WCDMA Input Waveform

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

DUAL RMS POWER DETECTOR DC - 3.9 GHz

RMSA & Error vs. Pin @ 3900 MHz^[1] 3.2 ERR +25C ERR +85C ERR -40C 2.8 3 2.4 2 ERROR (dB RMSA (V) 1.6 0 1.2 -1 0.8 -2 Ideal LOGOUT --+25C-3 0.4 LOGOUT -400 0 0 -70 -60 -50 -40 -30 -20 -10 10 INPUT POWER (dBm)

v03.1113

OUT [P,N] & Error vs. Pin @ 100 MHz [1] [2]

OUT [P,N] & Error vs. Pin @ 1900 MHz [1][2]

[1] WCDMA Input Waveform [2] INPA Power Swept, INPB Fixed Power @ -25 dBm

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com

OUT [P,N] & Error vs. Pin @ 900 MHz [1] [2]

OUT [P,N] & Error vs. Pin @ 2200 MHz [1][2]

Application Support: Phone: 1-800-ANALOG-D

DC - 3.9 GHz

v03.1113

OUTP OUT[P,N] (V) ERROR (dB) OUTF Err +25C -2 +85C -40C OUTP +250 OUTN Fr OUTN Err -400 n -70 -60 -50 -40 -30 -20 -10 0 10 INPUT POWER (dBm)

OUT [P,N] & Error vs. Pin @ 3900 MHz [1][2]

RMSB Intercept vs. Frequency [1]

WCDMA Input Waveform INPA Power Swept, INPB Fixed Power @ -25 dBm

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

OUT [P,N] & Error vs. Pin @ 3500 MHz^{[1][2]}

DUAL RMS POWER DETECTOR

RMSA Intercept vs. Frequency [1]

RMSA Slope vs. Frequency [1]

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

OUT [P,N] & Error vs. Pin @ 2700 MHz [1][2]

v03.1113

RMSB Slope vs. Frequency [1]

^[1] WCDMA Input Waveform[2] SCA1=SCA3=SCB1=SCB3=0V, SCA2=SCB2=5V

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

DUAL RMS POWER DETECTOR DC - 3.9 GHz

RMSA Error vs. Pin with WCDMA 4 Carrier @ +25°C ^{[1] [2]}

RMSA Error vs. Pin with WCDMA 4 Carrier @ +85°C wrt +25°C Response ^{[1] [2]}

v03.1113

RMSB Error vs. Pin with WCDMA 4 Carrier @ +85°C wrt +25°C Response ^{[1] [2]}

RMSB Error vs. Pin with WCDMA 4 Carrier @ -40°C wrt +25°C Response ^{[1] [2]}

RMSB vs. Pin with CW @ +25°C ^{[1] [2]}

[1] WCDMA Input Waveform[2] SCA1=SCA3=SCB1=SCB3=0V, SCA2=SCB2=5V

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

DUAL RMS POWER DETECTOR DC - 3.9 GHz

RMSA Error vs. Pin with WCDMA 4 Carrier @ -40°C wrt +25°C Response ^{[1] [2]}

RMSA Error vs. Pin with CW @ +25°C ^{[1] [2]}

v03.1113

RMSB Error vs. Pin with CW @ +25°C ^{[1] [2]} 3 2 ERROR (dB) 1 0 -1 00MHz 900MHz 1900MHz -2 2200MHz 2700MHz -3 900MHz -30 -20 -50 -40 -10 -70 -60 0 10 INPUT POWER (dBm)

RMSB Reading Error for WCDMA wrt CW Response @ +25°C ^{[1] [2]}

[1] WCDMA Input Waveform

[2] SCA1=SCA3=SCB1=SCB3=0V, SCA2=SCB2=5V

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. DUAL RMS POWER DETECTOR DC - 3.9 GHz

RMSA vs. Pin w/ CW & WCDMA 4

Carrier @ 1900 MHz & +25°C [1] [2] 3 2.5 CW WCDMA 2 RMSA (V) 1.5 1 0.5 0 -60 -50 -30 -20 -10 10 -70 -40 0 INPUT POWER (dBm)

RMSA Reading Error for WCDMA wrt CW Response @ +25°C ^{[1] [2]}

RMSA vs. Pin w/ CW & WCDMA 4 Carrier @ 1900MHz & +85°C ^{[1] [2]}

v03.1113

RMSB vs. Pin w/ CW & WCDMA 4 Carrier @ 1900 MHz & +85°C^{[1][2]}

RMSB Reading Error for WCDMA wrt CW Response @ +85°C ^{[1] [2]}

RMSB vs. Pin w/ CW & WCDMA 4 Carrier @ 1900 MHz & -40°C ^{[1] [2]}

[1] WCDMA Input Waveform

[2] SCA1=SCA3=SCB1=SCB3=0V, SCA2=SCB2=5V

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

DC - 3.9 GHz

DUAL RMS POWER DETECTOR

RMSA Reading Error for WCDMA wrt CW Response @ +85°C ^{[1] [2]}

RMSA vs. Pin w/ CW & WCDMA 4 Carrier @ 1900 MHz & -40°C ^{[1] [2]}

RMSA Reading Error for WCDMA wrt CW Response @ -40°C^{[1][2]}

v03.1113

RMSB Reading Error for WCDMA wrt CW Response @ -40°C ^{[1] [2]}

RMSA-RMSB, Channel Matching vs. Pin over Temperature @ 900 MHz ^{[2] [3]}

RMSA-RMSB, Channel Matching vs. Pin over Temperature @ 2200 MHz ^{[2] [3]}

[3] CW Input Waveform, RMSA Referenced

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

DUAL RMS POWER DETECTOR DC - 3.9 GHz

RMSA-RMSB, Channel Matching vs. Pin over Temperature @ 100 MHz^{[2][3]}

RMSA-RMSB, Channel Matching vs. Pin over Temperature @ 1900 MHz^{[2][3]}

RMSA-RMSB, Channel Matching vs. Pin over Temperature @ 2700 MHz ^{[2] [3]}

v03.1113

RMSA-RMSB, Channel Matching vs. Pin over Temperature @ 3500 MHz ^{[1] [2]}

Interference to an Input Signal (INB Power Fixed) with Interfering Signal on the other Channel (INA Power Swept)^[1]

RMS [A, B] Output Response with SCI = 000 @ 1900 MHz

[1] CW Input Waveform

[2] RMSA referenced

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC1030LP5E

DUAL RMS POWER DETECTOR DC - 3.9 GHz

RMSA-RMSB, Channel Matching vs. Pin over Temperature @ 3900 MHz^{[1][2]}

Interference to an Input Signal (INA Power Fixed) with Interfering Signal on the other Channel (INB Power Swept) ^[1]

RMS [A, B] Output Response with SCI = 111 @ 1900 MHz

DC - 3.9 GHz

v03.1113

Typical Supply Current vs. Pin, Vcc=5V ^[1]

Input Return Loss vs. Frequency 0 -5 -10 RETURN LOSS (dB) -15 -20 -25 -30 -35 -40 3 4 5 6 FREQUENCY (GHz)

DUAL RMS POWER DETECTOR

[1] CW Input Waveform

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

DC - 3.9 GHz

v03.1113

ETA vs. Pin with CW @ 900 MHz

ETA & ETA Error vs. Pin with CW @ 900 MHz

ETA vs. Pin with CW @ 1900 MHz

DUAL RMS POWER DETECTOR

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v03.1113

ETA & ETA Error vs. Pin with CW @ 1900 MHz

ETA vs. Pin with CW @ 3500 MHz

ETB vs. Pin with CW @ 3500 MHz

ETB & ETB Error vs. Pin with CW @ 3500 MHz

POWER DETECTORS - SMT

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

RoHS V EARTH FRIENDLY

v03.1113

ETA Intercept vs. Frequency with CW

ETA Slope vs. Frequency with CW

ETA Output Response @ 1900 MHz

DUAL RMS POWER DETECTOR

ETB Slope vs. Frequency with CW

ETB Output Response @ 1900 MHz

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

DUAL RMS POWER DETECTOR DC - 3.9 GHz

Absolute Maximum Ratings

Supply Voltage	5.6V
Single-Ended RF Input Power	10 dBm
Input Voltage	VCC \pm 0.6V
Channel / Junction Temperature	125°C
Continuous Pdiss (T = 85°C) (Derate 55.29 mW/°C above 85°C)	2.21 Watts
Thermal Resistance (R _{th}) (junction to ground paddle)	18.09 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1B

ELECTROSTATIC SENSITIVE DEVICE **OBSERVE HANDLING PRECAUTIONS**

Outline Drawing

v03.1113

- 6. CHARACTERS TO BE HELVETICA MEDIUM, .025 HIGH, WHITE INK, OR LASER MARK LOCATED APPROX. AS SHOWN. PAD BURR LENGTH SHALL BE 0.15mm MAX. PAD BURR HEIGHT SHALL BE 0.25mm MAX.
- 7.
- PACKAGE WARP SHALL NOT EXCEED 0.05mm 8.
- 9. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 10. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED PCB LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[2]
HMC1030LP5E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[1]	<u>H1030</u> XXXX

[1] Max peak reflow temperature of 260 °C

[2] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v03.1113

HMC1030LP5E

RoHS

DUAL RMS POWER DETECTOR DC - 3.9 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 8, 9, 10, 31,32	SCA1, SCB1, SCB2, SCB3, SCA3, SCA2	Digital input pins that control the internal integration time constant for mean square calculation. SCA(B)3 is the most significant bit. Set V>0.2xVcc to disable. Shortest integration time is for SCA(B)=000, longest integration time is for SCA(B)=111. Each step changes the integration time by 1 octave.	SCA1-3 (SCB1-3)
2, 3 6, 7	INNA, INPA INPB, INNB	RF Input Pins.	INPA (INPB) (INPB) (INPB) (INPB) (INPB) (INNB) (INNB) (INNB) (INNB) (INNB) (INNB) (INNB) (INNB) (INNB) (INPA) (INPA) (VCCA) (VCCB) (VCCCB) (VC
4, 25	ENX, ENOUT	The ENX input is the active low enable pin of the whole device. The ENOUT input is the active high enable pin of the integrated OpAmps driving OUTA & OUTB, ETA & ETB. For normal operation, ENX should be connected to GND and ENOUT should be connected to Vcc.	
5, 11, 30	VCCBS, VCCB, VCCA	Bias Supply. Connect supply voltage to these pins with appropriate filtering.	

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

11

v03.1113

DUAL RMS POWER DETECTOR DC - 3.9 GHz

Pin Descriptions (Continued)

Pin Number	Function	Description	Interface Schematic
12, 13, 28, 29	COPB, CONB, CONA, COPA	Input high pass filter capacitor. Connect a capacitor between COPA(COPB) and CONA (CONB) to determine 3 dB point of input signal high-pass filter.	VCCA (VCCB) (VCCB) (VCCB) (VCCB) (VCCB) (VCCB) (VCCB) (VCCB) (VCCB) (VCCB) (VCCB) (VCCB) (VCCB) (VCCB) (VCCB) (VCCB) (VCCCB) (
14, 27	ETB, ETA	Linear output that provides an indication of envelope of the input signal.	VCCA (VCCB) (VCCB) 19 19 19 ETA (ETB)
15	VREF2	2.5V Reference voltage output.	VCCBIAS
16	VLVL	Reference level input for OUTP and OUTN. Connect to VREF for normal operation.	
17, 24	VSETB, VSETA	VSET inputs. Set point inputs for controller mode.	
18, 23	RMSB, RMSA	Logarithmic outputs that convert the input power to a DC level for channel A and channel B.	INTERNAL BIAS C C CCA C(VSETB) C CCA C(VCCB) C CCA C(VCCB) C CCA C(VSETB)

11

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v03.1113

DUAL RMS POWER DETECTOR DC - 3.9 GHz

Pin Descriptions (Continued)

Pin Number	Function	Description	Interface Schematic
19	FBKB	Feedback through 3.5k Ohm to the negative terminal of the integrated Op Amp driving OUTN	VCCA (VCCB)
20	OUTN	Output providing the difference of RMS outputs using an Op Amp. For normal operation, connected to FBKB to provide the function: OUTN = RMSB - RMSA + VLVL	
21	OUTP	Output providing the difference of RMS outputs using an Op Amp. For normal operation, connected to FBKA to provide the function: OUTP = RMSA - RMSB + VLVL	
22	FBKA	Feedback through 3.5K Ohms to the negative terminal of the integrated Op Amp driving OUTP	
26	TEMP	Temperature sensor output. See Application Note section.	VCCA (VCCB) VCCB) VCCB) VVCCB) VVCCB) VVCCB) VVCCB) VVCCB) VVCCB) VVCCB) VCCA (VCCB) VCCA VCCCB) VCC
	GND	Package bottom has an exposed metal paddle that must be connected to RF/DC ground.	

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v03.1113

DUAL RMS POWER DETECTOR DC - 3.9 GHz

Evaluation PCB - Wideband Single-Ended

List of Materials for Evaluation PCB EVAL01-HMC1030LP5E^[1]

Item	Description
J1, J4, J8, J12, J13, J14, J15, J18	SMA Connector
J19, TP2, TP3, TP5, TP6, TP7, TP9, TP10, TP11, TP16, TP17	DC Pin
C1, C2, C5, C6, C9, C21	1 nF Capacitor, 0402 Pkg.
C3,C7, C11, C22	100 pF Capacitor, 0402 Pkg.
C4,C8,C23	100 nF Capacitor, 0402 Pkg.
R2, R8	49.9 Ohm Resistor, 0402 Pkg.
R18, R30	560 Ohm Resistor, 0402 Pkg.
R22, R23, R27, R28, R31	1K Ohm Resistor, 0402 Pkg.
R6, R12-14,R37-39	10K Ohm Resistor, 0402 Pkg.
R4, R10,R16, R20,R25-26, R33	0 Ohm Resistor, 0402 Pkg.
U1	HMC1030LP5E Single-Ended Dual RMS Power Detector
PCB [2]	600-00049-00-1 Evaluation PCB

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

Reference this number when ordering complete evaluation PCB
Circuit Board Material: Rogers 4350 or Arlon 25FR

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.