imall

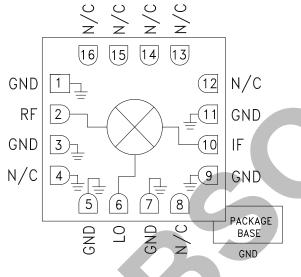
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Typical Application

The HMC1043LC3 is ideal for:

- Ka-band Transponders
- Point-to-Multi-Point Radios & VSAT
- Test Equipment & Sensors
- Military End-Use

Functional Diagram

HMC1043LC3

GaAs MMIC FUNDAMENTAL MIXER, 29 - 32 GHz

Features

Passive: No DC Bias Required High Input IP3: 23 dBm High LO/RF Isolation: 45 dB High 2LO/IF Isolation: 50 dBm Wide IF Bandwidth: 16 - 22 GHz Upconverter & Downconverter Applications 16 Lead Ceramic 3x3 mm SMT Package: 9 mm²

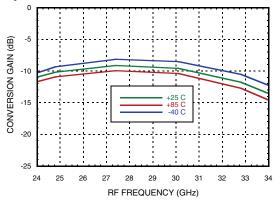
General Description

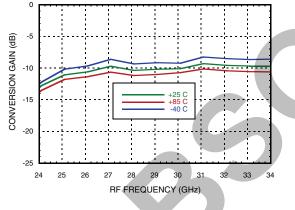
The HMC1043LC3 is a general purpose triple balanced mixer that can be used as a frequency converter with 16 to 22 GHz at the IF port and 26 to 32 GHz at the RF port. This mixer requires no external components or matching circuitry. The HMC1043LC3 provides excellent LO/RF, LO/IF and 2LO/IF isolation due to optimized balun structures. The mixer operates with LO drive levels from +9 dBm to +15dBm. The HMC1043LC3 eliminates the need for wire bonding and allows the use of surface mount manufacturing techniques.

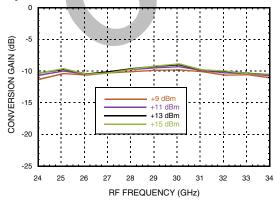
Electrical Specifications, $T_A = +25 \text{ °C}$, LO= 9 GHz, LO = +13 dBm^[1]

Parameter	Min.	Тур.	Max.	Units
RF Frequency Range		26 - 32		GHz
IF Frequency Range		16-22		GHz
LO Frequency Range		7 - 11		GHz
Conversion Loss		10	13	dB
LO to RF Isolation [2]		45		dB
LO to IF Isolation ^[2]		32		dB
2LO to IF Isolation ^[2]		50		dB
RF to IF Isolation		38		dB
IP3 (Input)		23		dBm
1 dB Gain Compression (Input)		10		dBm

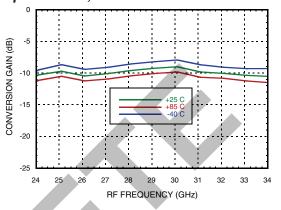
[1] Unless otherwise noted all measurements performed as an upconverter.


[2] Fixed IF = 17 GHz.

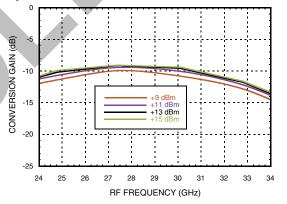

v02.0414

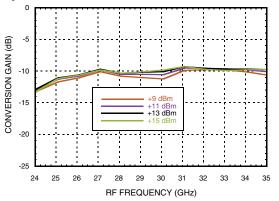

Conversion Gain vs. Temperature Upconverter, LO= 7 GHz

Conversion Gain vs. Temperature Upconverter, LO= 11 GHz



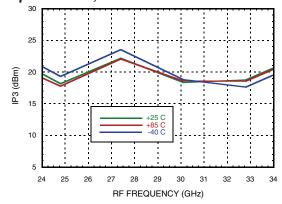
Conversion Gain vs. LO Power Upconverter, LO= 9 GHz



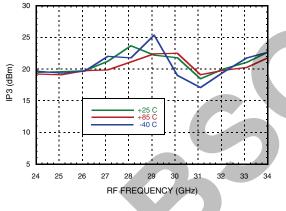

Conversion Gain vs. Temperature Upconverter, LO= 9 GHz

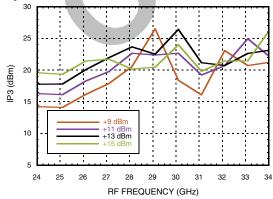
Conversion Gain vs. LO Power Upconverter, LO= 7 GHz

Conversion Gain vs. LO Power Upconverter, LO= 11 GHz

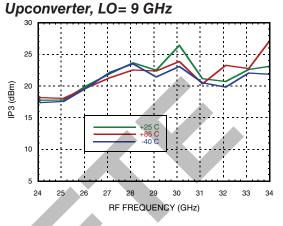


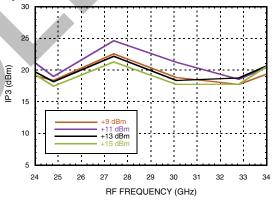
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



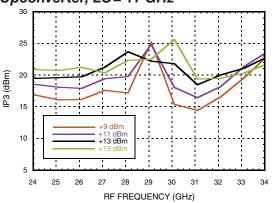

Input IP3 vs. Temperature Upconverter, LO= 7 GHz

Input IP3 vs. Temperature Upconverter, LO= 11 GHz


Input IP3 vs. LO Power Upconverter, LO= 9 GHz


MIXER, 29 - 32 GHz

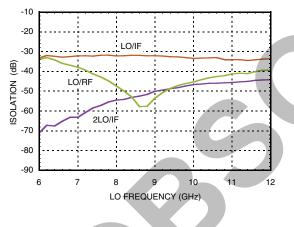
GaAs MMIC FUNDAMENTAL


Input IP3 vs. Temperature

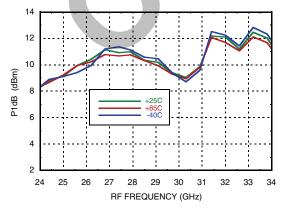
Input IP3 vs. LO Power Upconverter, LO= 7 GHz

Input IP3 vs. LO Power Upconverter, LO= 11 GHz

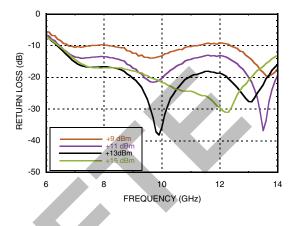
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

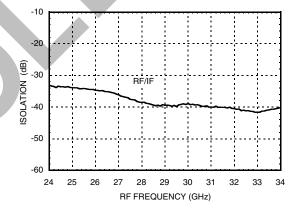

GaAs MMIC FUNDAMENTAL MIXER, 29 - 32 GHz

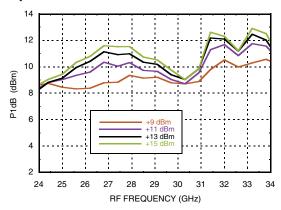
ROHSV


RF and IF Return Loss 0 -5 -10 (qB) RETURN LOSS -15 -20 -25 RF -30 -35 -40 15 19 23 27 31 35 FREQUENCY (GHz)

v02.0414


Isolation LO/IF, LO/RF, 2LO/IF


Input P1dB vs. Temperature @ LO= 9 GHz


LO Return Loss

Isolation RF/IF

Input P1dB vs. LO Power @ LO= 9 GHz

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

MIXER, 29 - 32 GHz

GaAs MMIC FUNDAMENTAL

v02.0414

Harmonics of LO

	nLO Spur at RF Port						
LO Freq. (GHz)	1	2	3	4			
5	44.64	58.77	58.11	53.59			
6	33.41	41.23	62.4	36.69			
7	37.68	35.88	52.15	35.92			
8	45.93	35.38	53.02	37.53			
9	52.07	38.59	53.75	44.9			
10	43.98	41.39	56.39	55.45			
11	41.05	48.29	58.23	69.13			
12	40.24	40.36	53.27	68.1			
13	38.96	33.73	50.12	Х			
14	36.52	34.19	52.84	Х			
15	36.77	35.25	47.77	Х			
LO = + 13 dBm							

Values in dBc below LO level measured at RF Port.

Harmonics of LO

Harmonics of LO

	nLO Spur at RF Port					
LO Freq. (GHz)	1	2	3	4		
5	51.31	65.34	67.53	61.91		
6	33.4	40.79	64.37	42		
7	35.52	34053	52.4	37.18		
8	41.82	33.64	52.57	38.14		
9	51.78	36.7	53.25	48.7		
10	44.38	39.35	55.72	59.39		
11	40.67	47.34	59.58	66.13		
12	39.62	39.59	54.12	62.85		
13	38.29	33.31	50.77	Х		
14	35.73	33.7	54.37	Х		
15	35.99	34.44	49.26	Х		
LO = + 11 dBm						

Values in dBc below LO level measured at RF Port.

		nLO Spur	at RF Port		
LO Freq. (GHz)	1	2	3	4	
5	53.65	72.42	79.72	75.47	
6	34.87	42.68	68.91	39.55	
7	34.13	33.68	53.77	42.48	
8	38.67	32.09	52.99	39.56	
9	46.35	34.74	53.73	62.72	
10	44.63	37.33	56.47	71.66	
11	40.21	46.128	63.39	64.91	
12	39	39.23	56.69	59.77	
13	37.6	32.91	52.2	х	
14	34.93	33.24	56.23	х	
15	35.23	33.6	52.44	х	
LO = + 9 dBm Values in dBc below LO level measured at RF Port.					

RoHS V

MxN Spurious Outputs, Downconverter

	nLO						
mRF	0	1	2	3	4		
0		-0.7	33.3	-2.3	28.4		
1	26.4		37.1	30.3	95.8		
2	Х	70	66.9	58.5	68.9		
RF = 28.1 GHz @ -10 dBm							
LO = 7 GHz @ +11 dBm							
All values i	All values in dBc below RF power level						

MxN Spurious Outputs, Downconverter

mRF 0 1 2 3 4 0 -0.1 20.8 5.9 36	nLO				
0 -0.1 20.8 5.9 36	4				
	5.9				
1 28.9 42.7 53.6 5	53				
2 X X 71 56.6 69	9.7				

RF = 30.1 GHz @ -10 dBm

LO = 9 GHz @ +11 dBm

All values in dBc below RF power level

MxN Spurious Outputs, Downconverter

	nLO						
mRF	0	1	2	3	4		
0		1.6	16.2	22.3	47.4		
1	30		44.6	53.6	46.6		
2	Х	X	74.8	60.3	68.4		
3	X X X X 71.4						
RF = 31.1 GHz @ -10 dBm LO = 11 GHz @ +11 dBm All values in dBc below RF power level							

MxN Spurious Outputs, Downconverter

	nLO					
mRF	0	1	2	3	4	
0		-2	16.3	25.5	Х	
1	30.2		50.5	35.5	55.9	
2	Х	Х	75	62.3	69	
3	Х	Х	Х	Х	70.9	
RF = 33.1 GHz @ -10 dBm						
LO = 13 GHz @ +11 dBm						
All values in dBc below RF power level						
L						

GaAs MMIC FUNDAMENTAL MIXER, 29 - 32 GHz

HMC1043LC3

MxN Spurious Outputs, Upconverter

	nLO						
mIF	0	1	2	3	4		
0		4.7	3.4	21.3	6.1		
1	23.5		52	23.2	45.9		
2 5.2 68 X X X							
IF = 21.1 GHz @ -10 dBm							
LO = 7 GHz @ +11 dBm							

All values in dBc below IF power level

MxN Spurious Outputs, Upconverter

			nLO		
mIF	0	1	2	3	4
0		21.5	6.4	23	17.8
1	24.1		4.7	36.7	Х
2	53.5	Х	Х	х	Х

IF = 21.1 GHz @ -10 dBm

LO = 9 GHz @ +11 dBm

All values in dBc below IF power level

MxN Spurious Outputs, Upconverter

	nLO						
mIF	0	1	2	3	4		
0		1.1	16.7	28.9	34.9		
1	25.1		47.1X	Х	Х		
2 52.6 X X X X							
IF = 20.1 GHz @ -10 dBm							
LO = 11 GHz @ +11 dBm							
All values i	n dBc belov	w IF power	level				

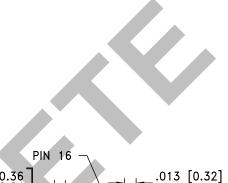
MxN Spurious Outputs, Upconverter

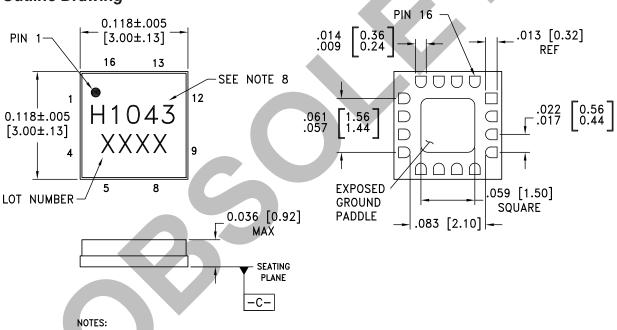
	nLO					
mIF	0	1	2	3	4	
0		7.1	2.1	19.6	Х	
1	25.7		44.9	Х	Х	
2	51.4	Х	Х	Х	Х	
IF = 20.1 GHz @ -10 dBm						

LO = 13 GHz @ +11 dBm

All values in dBc below IF power level

Absolute Maximum Ratings


	•
RF / IF Input(LO = +18 dBm)	+15.5 dBm
LO Drive	+20 dBm
Channel Temperature	150°C
Continuous Pdiss (T=85°C) (derate 2.5 mW/°C above 85°C)	160 mW
Thermal Resistance (R _{TH}) (junction to package bottom)	394°C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-55 to +85 °C
ESD Sensitivity (HBM)	Class 1A


Outline Drawing

HMC1043LC3

1. PACKAGE BODY MATERIAL: ALUMINA

- 2. LEAD AND GROUND PADDLE PLATING: 30-80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKEL.
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.

5. CHARACTERS TO BE BLACK INK MARKED WITH .018"MIN to .030"MAX HEIGHT REQUIREMENTS. UTILIZE MAXIMUM CHARACTER HEIGHT BASED ON LID DIMENSIONS AND BEST FIT. LOCATE APPROX. AS SHOWN.

- 6. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM -C-
- 7. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[2]
HMC1043LC3	Alumina, White	Gold over Nickel	MSL3 ^[1]	H1043 XXXX

[1] Max peak reflow temperature of 260 $^\circ\text{C}$

[2] 4-Digit lot number XXXX

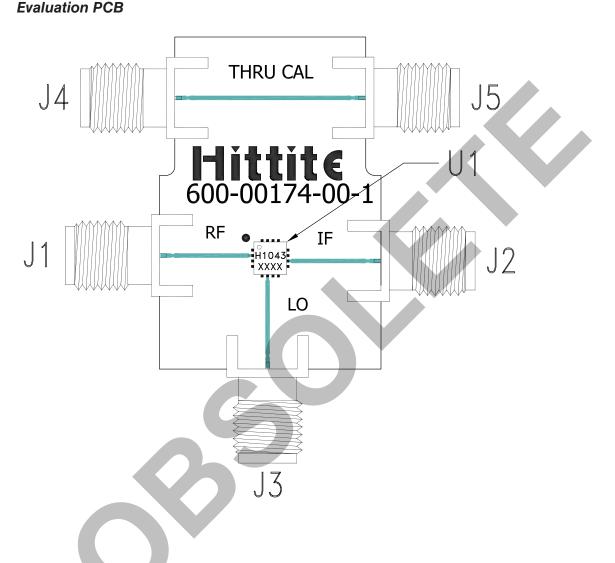
GaAs MMIC FUNDAMENTAL MIXER, 29 - 32 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic	
1, 3, 5, 7, 10, 11	GND	These pins and the exposed ground paddle must be connected to RF/DC ground.		
2	RF	This pad is AC coupled and matched to 50 Ohms.	RF O	
4, 8, 9, 12-16	N/C	No connection required. These pins are not connected internally: However, all data shown herein was measured with these pins connected to ground.		
6	LO	This pad is AC coupled and matched to 50 Ohms		
10	IF	This pad is AC coupled and matched to 50 Ohms	IF O	

v02.0414

AIXER - TRIPLE-BALANCED - SMT



MIXER, 29 - 32 GHz

GaAs MMIC FUNDAMENTAL

v02.0414

List of Materials for Evaluation PCB EVAL01-HMC1043LC3 [1]

Item	Description
J1-J5	PCB Mount 2.9 mm K Connector, SRI
U1	HMC1043LC3
PCB [2]	109996-1 Evaluation Board

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC1043LC3

GaAs MMIC FUNDAMENTAL MIXER, 29 - 32 GHz

Notes

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.