

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

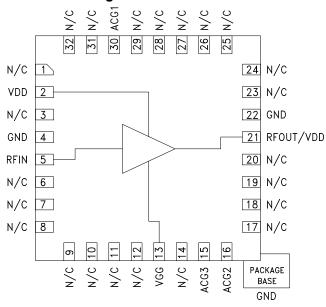
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Typical Applications

The HMC1049LP5E is ideal for:

- Test Instrumentation
- High Linearity Microwave Radios
- VSAT & SATCOM
- · Military & Space

Functional Diagram

GaAs pHEMT MMIC LOW NOISE AMPLIFIER, 0.3 - 20 GHz

Features

Noise Figure: 1.8 dB

P1dB Output Power: +14.5 dBm Psat Output Power: +17.5 dBm

High Gain: 15 dB Output IP3: +29 dBm

Supply Voltage: Vdd = +7V @ 70 mA

50 Ohm Matched Input/Output

32 Lead 5x5 mm SMT Package: 25mm²

General Description

The HMC1049LP5E is a GaAs MMIC Low Noise Amplifier which operates between 0.3 and 20 GHz. This LNA provides 15 dB of small signal gain, 1.8 dB noise figure, and output IP3 of 29 dBm, while requiring only 70 mA from a +7 V supply. The P1dB output power of 14.5 dBm enables the LNA to function as a LO driver for balanced, I/Q or image reject mixers. Vdd can be applied to pin 2 or pin 21. Pin 21 will require a bias tee. The HMC1049LP5E amplifier I/Os are internally matched to 50 Ohms and the device is supplied in a compact, leadless QFN 5x5 mm surface mount package.

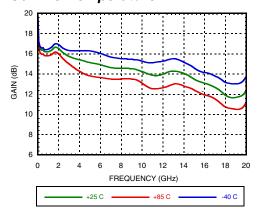
Electrical Specifications, $T_A = +25^{\circ}$ C, Vdd = +7V, Idd = 70 mA [1]

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range	0.3 - 1		1 - 14		14 - 20			GHz		
Gain	13.5	16.5		12	15		10	13		dB
Gain Variation Over Temperature		0.006			0.019			0.017		dB/°C
Noise Figure		2.5	3.5		1.8	2.5		2.7	4.0	dB
Input Return Loss		15			13			14		dB
Output Return Loss		8			15			13		dB
Output Power for 1 dB Compression (P1dB)		15			14.5			13		dBm
Saturated Output Power (Psat)		18			17.5			16		dBm
Output Third Order Intercept (IP3) [2]		31			29			26		dBm
Total Supply Current		70			70			70		mA

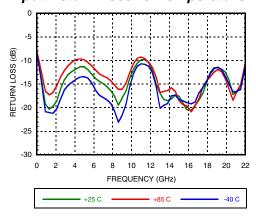
^[1] Adjust Vgg between -2 to 0V to achieve Idd = 70 mA typical.

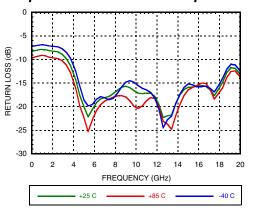
^[2] Measurement taken at Pout / tone = +8 dBm.

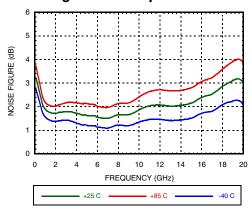


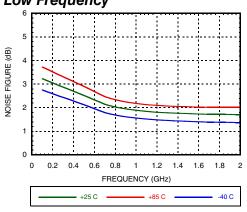

GaAs pHEMT MMIC LOW NOISE AMPLIFIER, 0.3 - 20 GHz

Data taken with Vdd applied to pin 2.


Broadband Gain & Return Loss

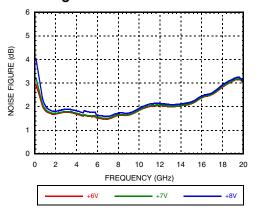

Gain vs. Temperature

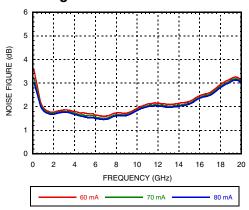

Input Return Loss vs. Temperature


Output Return Loss vs. Temperature

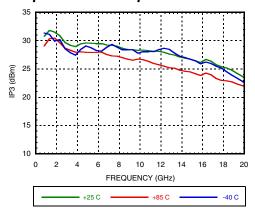
Noise Figure vs. Temperature

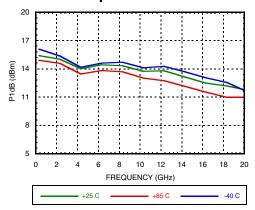
Noise Figure vs. Temperature, Low Frequency

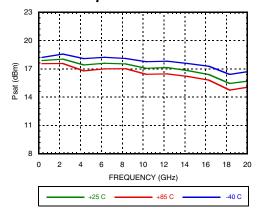


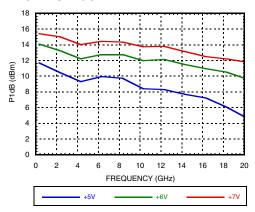

GaAs pHEMT MMIC LOW NOISE AMPLIFIER, 0.3 - 20 GHz

Data taken with Vdd applied to pin 2.


Noise Figure vs. Vdd

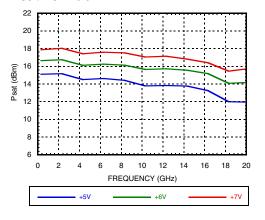

Noise Figure vs. Idd

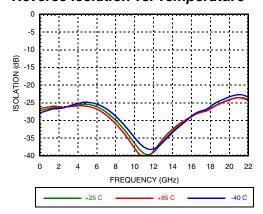

Output IP3 vs. Temperature


P1dB vs. Temperature

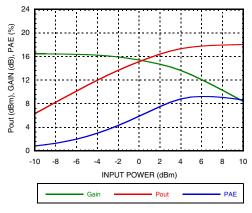
Psat vs. Temperature

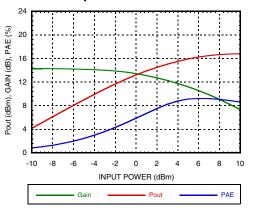
P1dB vs. Vdd

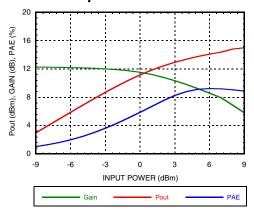


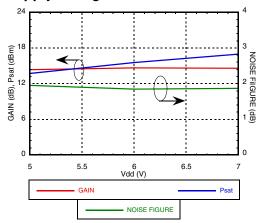

GaAs pHEMT MMIC LOW NOISE AMPLIFIER, 0.3 - 20 GHz

Data taken with Vdd applied to pin 2.


Psat vs. Vdd

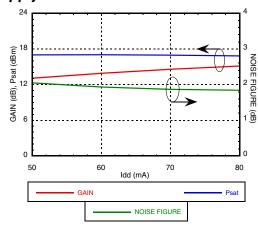

Reverse Isolation vs. Temperature


Power Compression @ 2 GHz


Power Compression @ 10 GHz

Power Compression @ 18 GHz

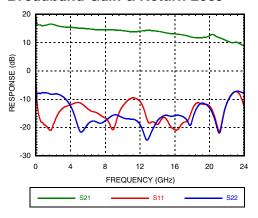
Noise Figure, Gain & Power vs. Supply Voltage @ 12 GHz

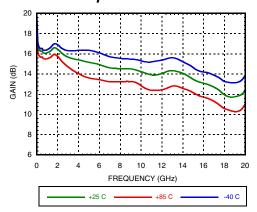


GaAs pHEMT MMIC LOW NOISE AMPLIFIER, 0.3 - 20 GHz

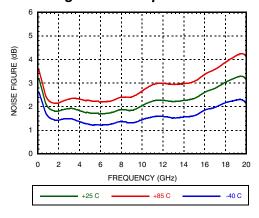
Data taken with Vdd applied to pin 2.

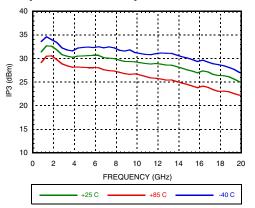
Noise Figure, Gain & Power vs. Supply Current @ 12 GHz

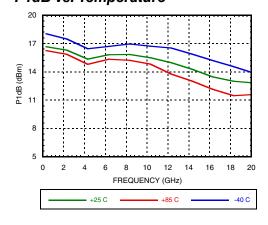


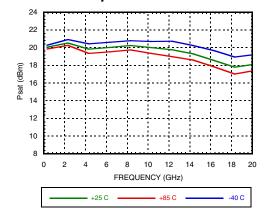

GaAs pHEMT MMIC LOW NOISE AMPLIFIER, 0.3 - 20 GHz

Data taken with Vdd applied to bias tee at pin 21.


Broadband Gain & Return Loss [1]


Gain vs. Temperature [1]


Noise Figure vs. Temperature [1]


Output IP3 vs. Temperature [1]

P1dB vs. Temperature [1]

Psat vs. Temperature [1]

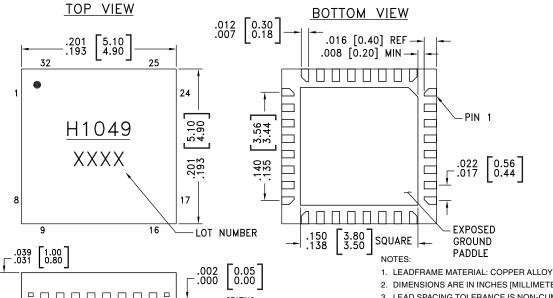
[1] Vdd= +4V, supply to bias tee.

GaAs pHEMT MMIC LOW NOISE AMPLIFIER, 0.3 - 20 GHz

Absolute Maximum Ratings

Drain Bias Voltage (Vdd)	+10V		
Drain Bias Voltage (RF out / Vdd)	+7V		
RF Input Power	+18 dBm		
Gate Bias Voltage, Vgg1	-2V to +0.2V		
Channel Temperature	175 °C		
Continuous Pdiss (T = 85 °C) (derate 37.1 mW/°C above 85 °C)	3.34 W		
Thermal Resistance (Channel to die bottom)	26.9 °C/W		
Storage Temperature	-65 to +150 °C		
Operating Temperature	-40 to +85 °C		
ESD Sensitivity (HBM)	Class 1A		

Typical Supply Current vs. Vdd


Vdd (V)	Idd (mA)
+5	70
+6	70
+7	70

Adjust Vgg1 to achieve Idd = 70 mA

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

PLANE

-c-

- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED PCB LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating [2]	Package Marking [1]	
HMC1049LP5E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1	<u>H1049</u> XXXX	

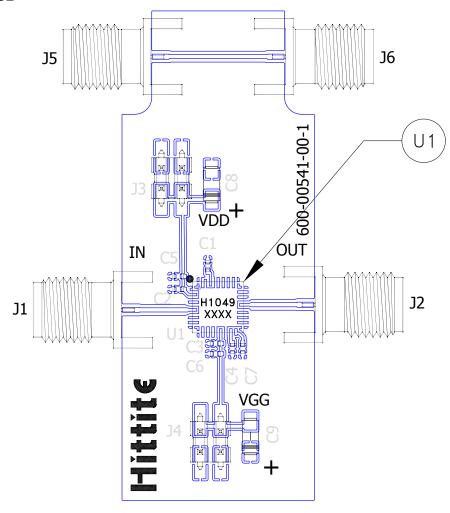
^{[1] 4-}Digit lot number XXXX

△ .003[0.08] C

^[2] Max peak reflow temperature of 260 °C

GaAs pHEMT MMIC LOW NOISE AMPLIFIER, 0.3 - 20 GHz

Pin Descriptions


Pad Number	Function	Description	Interface Schematic
1, 3, 6-12, 14, 17-20, 23-29, 31, 32	N/C	No connection required. The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
2	Vdd	Power supply voltage for the amplifier. External bypass capacitors 100 pF, and 0.01 uF are required.	OVdd
4, 22	GND	These pins and the exposed ground paddle must be connected to RF/DC ground.	O GND
5	RFIN	This pin is DC coupled and matched to 50 Ohms.	RFIN ACG2
13	Vgg	Gate control for amplifier. External bypass capacitors 100 pF, 0.01uF, and 4.7 uF are required. Adjust voltage to achieve typical Idd.	Vgg O
15, 16	ACG3, ACG2	Low frequency termination. External bypass capacitors 100 pF are required.	RFIN ACG2 ACG3
21	RFOUT/Vdd	This pin is DC coupled and matched to 50 Ohms.	○ RFOUT
30	ACG1	Low frequency termination. External bypass capacitor 100 pF required.	ACG1 RFOUT

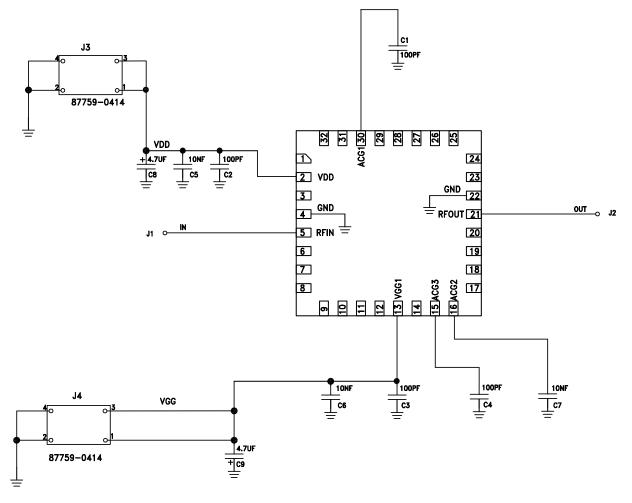
GaAs pHEMT MMIC LOW NOISE AMPLIFIER, 0.3 - 20 GHz

Evaluation PCB

List of Materials for Evaluation PCB EV1HMC1049LP5

Item	Description	
J1, J2, J5, J6	PCB Mount SMA RF Connector.	
J3, J4	DC Pins.	
C1 - C4	100 pF Capacitor, 0402 Pkg.	
C5 - C7	10000 pF Capacitor, 0402 Pkg.	
C8 - C9	4.7 uF Capacitor, Tantalum.	
U1	HMC1049LP5E.	
PCB [1]	600-00541-00-1 Evaluation PCB.	

[1] Circuit Board Material: Rogers 4350 or Arlon 25FR


The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

GaAs pHEMT MMIC LOW NOISE AMPLIFIER, 0.3 - 20 GHz

Evaluation PCB Schematic

