

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

GaAs MMIC I/Q Mixer 8 - 12 GHz

Typical Applications

The HMC1056LP4BE is ideal for:

- Point-to-Point and Point-to-Multi-Point Radio
- Military Radar, EW & ELINT
- Satellite Communications
- Sensors

Features

Wide IF Bandwidth: DC - 4 GHz

Image Rejection: 25 dBc LO to RF isolation: 40 dB

High Input IP3: 18 dBm

20 Lead 4x4 mm SMT Package: 16 mm²

Functional Diagram

General Description

The HMC1056LP4BE is a compact I/Q MMIC mixer in a leadless "Pb free" SMT package, which can be used as either an Image Reject Mixer or a Single Sideband Upconverter. The mixer utilizes two standard Hittite double balanced mixer cells and a 90 degree hybrid fabricated in a GaAs Schottky diode process. A low frequency quadrature hybrid was used to produce a 100MHz LSB IF output. This product is a much smaller alternative to hybrid style Image Reject Mixers and Single Sideband Upconverter assemblies. The HMC1056LP4BE eliminates the need for wire bonding and allows the use of surface mount manufacturing techniques.

Electrical Specifications, $T_A = +25$ °C, IF = 100 MHz, LSB, LO = +10 dBm [1]

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range, RF/LO		8 - 10			10 - 12		GHz
Frequency Range, IF		DC - 4			DC - 4		GHz
Conversion Loss		8	11		8	11	dB
Image Rejection	18	25		12	18		dBc
LO to RF isolation	33	40		33	40		dB
LO to IF isolation		35			40		dB
IP3 (input)		18			17		dBm
Amplitude Balance [2]		+0.5			+1.5		dB
Phase Balance [2]		+2.5			-2.5		Deg

^[1] Unless otherwise noted all measurements performed as downconverter.

^[2] Data taken without external 90° hybrid.

HMC1056* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS -

View a parametric search of comparable parts.

EVALUATION KITS

· HMC1056LP4B Evaluation Board

DOCUMENTATION

Data Sheet

• HMC1056 Data Sheet

REFERENCE MATERIALS -

Quality Documentation

- Package/Assembly Qualification Test Report: LP4, LP4B, LP4C, LP4K (QTR: 2013-00487 REV: 04)
- Semiconductor Qualification Test Report: GaAs SD-A (QTR: 2014-00094)

DESIGN RESOURCES 🖵

- HMC1056 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC1056 EngineerZone Discussions.

SAMPLE AND BUY 🖵

Visit the product page to see pricing options.

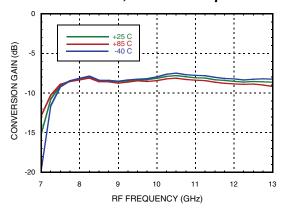
TECHNICAL SUPPORT

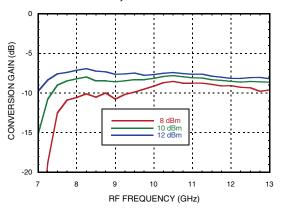
Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK 🖳

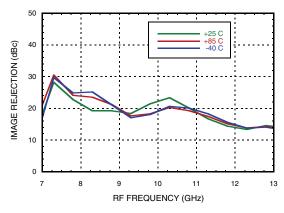
Submit feedback for this data sheet.

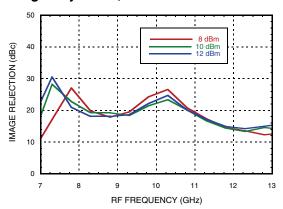
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

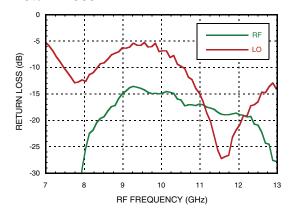


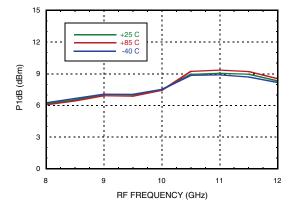

GaAs MMIC I/Q Mixer 8 - 12 GHz

Data Taken as SSB Downconverter with External IF 90° Hybrid, IF = 100 MHz


Conversion Gain, LSB vs. Temperature


Conversion Gain, LSB vs. LO Drive

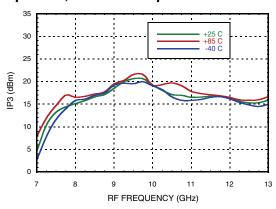

Image Rejection, LSB vs. Temperature

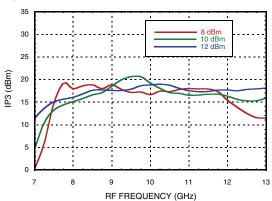

Image Rejection, LSB vs. LO Drive

Return Loss

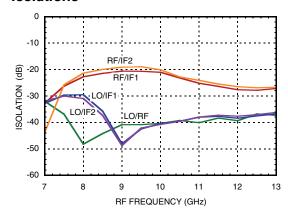
Input P1dB, LSB vs. Temperature

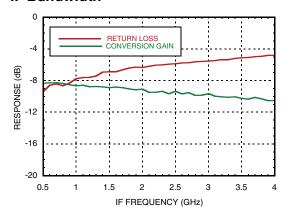
[1] Data taken without external IF 90° hybrid

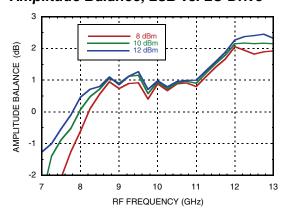


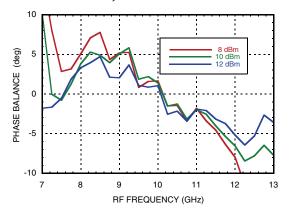

GaAs MMIC I/Q Mixer 8 - 12 GHz

Data Taken as SSB Downconverter with External IF 90° Hybrid, IF = 100 MHz


Input IP3, LSB vs. Temperature


Input IP3, LSB vs. LO Drive

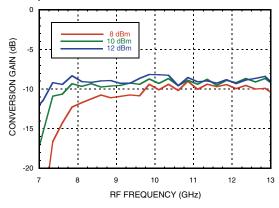

Isolations

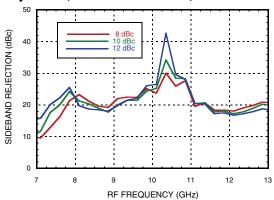

IF Bandwidth*

Amplitude Balance, LSB vs. LO Drive

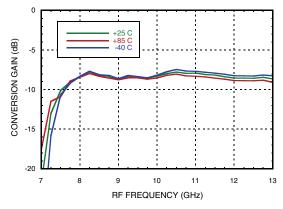
Phase Balance, LSB vs. LO Drive

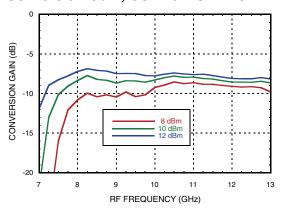
^{*} Conversion gain data taken with external IF hybrid.

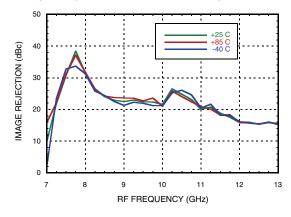



GaAs MMIC I/Q Mixer 8 - 12 GHz

Data Taken as SSB Downconverter with External IF 90° Hybrid, IF = 100 MHz


Upconverter Performance, Conversion Gain, LSB vs. LO Drive


Upconverter Performance, Sideband Rejection, LSB vs. LO Drive,


Conversion Gain, USB vs. Temperature

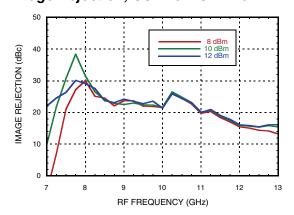
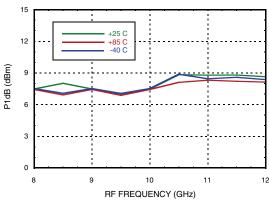
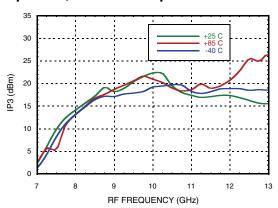

Conversion Gain, USB vs. LO Drive

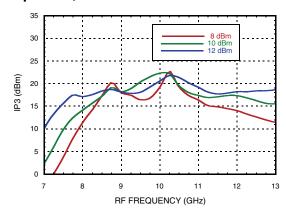
Image Rejection, USB vs. Temperature

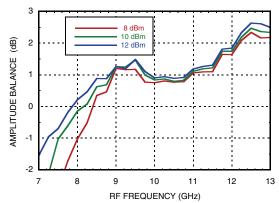
Image Rejection, USB vs. LO Drive

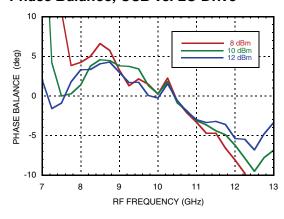


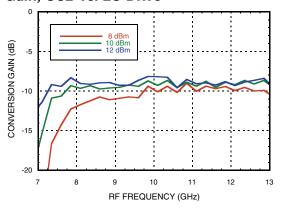

GaAs MMIC I/Q Mixer 8 - 12 GHz

Data Taken as SSB Downconverter with External IF 90° Hybrid, IF = 100 MHz


Input P1dB, USB vs. Temperature

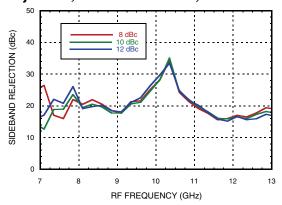

Input IP3, USB vs. Temperature


Input IP3, USB vs. LO Drive


Amplitude Balance, USB vs. LO Drive

Phase Balance, USB vs. LO Drive

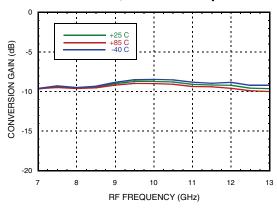
Upconverter Performance, Conversion Gain, USB vs. LO Drive

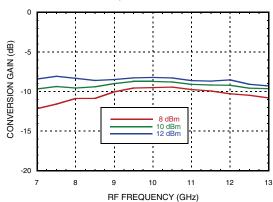


GaAs MMIC I/Q Mixer 8 - 12 GHz

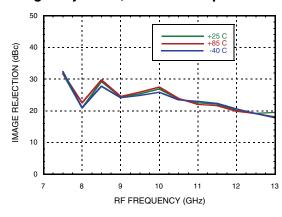
Data Taken as SSB Upconverter with External IF 90° Hybrid, IF = 100 MHz

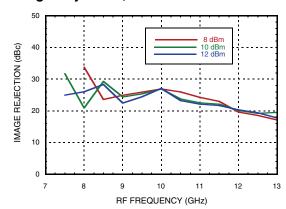
Upconverter Performance, Sideband Rejection, USB vs. LO Drive,

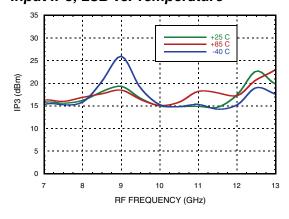


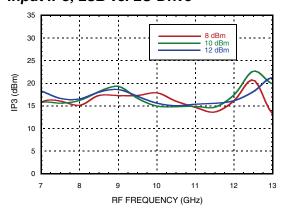

GaAs MMIC I/Q Mixer 8 - 12 GHz

Data Taken as SSB Downconverter with External IF 90° Hybrid, IF = 1000 MHz


Conversion Gain, LSB vs. Temperature

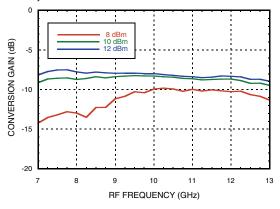

Conversion Gain, LSB vs. LO Drive

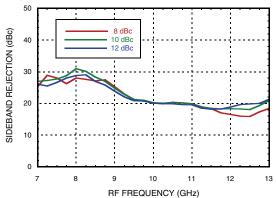

Image Rejection, LSB vs. Temperature


Image Rejection, LSB vs. LO Drive

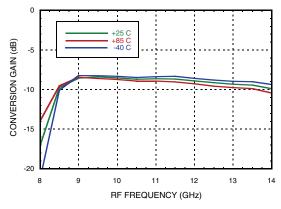
Input IP3, LSB vs. Temperature

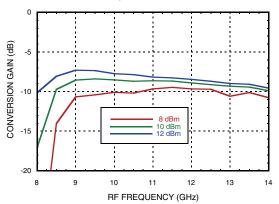
Input IP3, LSB vs. LO Drive

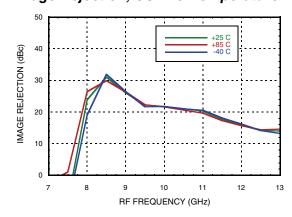



GaAs MMIC I/Q Mixer 8 - 12 GHz

Data Taken as SSB Downconverter with External IF 90° Hybrid, IF = 1000 MHz


Upconverter Performance, Conversion Gain, LSB vs. LO Drive


Upconverter Performance, Sideband Rejection, LSB vs. LO Drive,


Conversion Gain, USB vs. Temperature

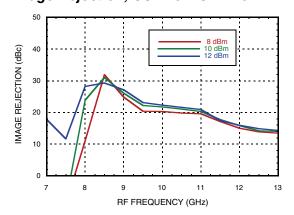
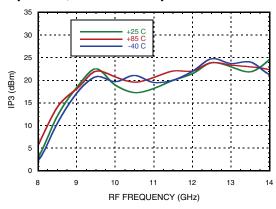
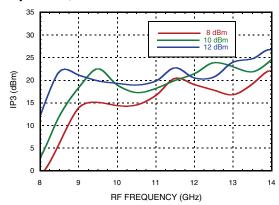

Conversion Gain, USB vs. LO Drive

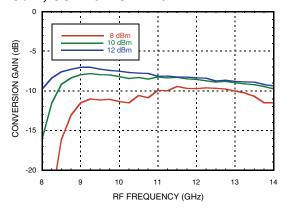
Image Rejection, USB vs. Temperature

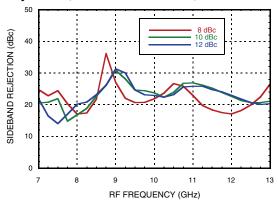
Image Rejection, USB vs. LO Drive




GaAs MMIC I/Q Mixer 8 - 12 GHz

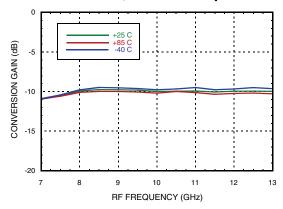
Data Taken as SSB Downconverter with External IF 90° Hybrid, IF = 1000 MHz

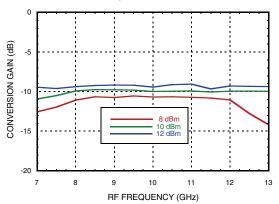

Input IP3, USB vs. Temperature


Input IP3, USB vs. LO Drive

Upconverter Performance, Conversion Gain, USB vs. LO Drive

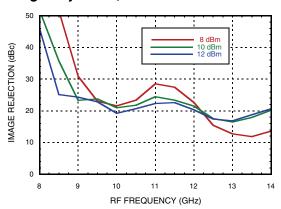
Upconverter Performance, Sideband Rejection, USB vs. LO Drive,

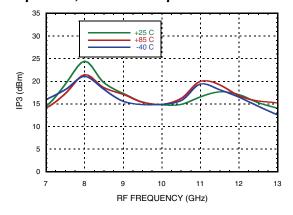


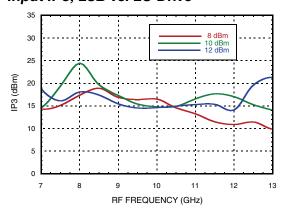

GaAs MMIC I/Q Mixer 8 - 12 GHz

Data Taken as SSB Downconverter with External IF 90° Hybrid, IF = 2000 MHz

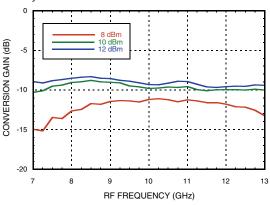
Conversion Gain, LSB vs. Temperature

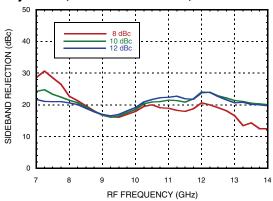

Conversion Gain, LSB vs. LO Drive


Image Rejection, LSB vs. Temperature

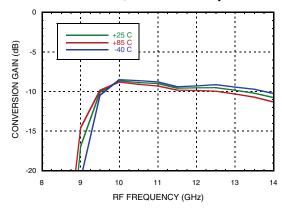

Image Rejection, LSB vs. LO Drive

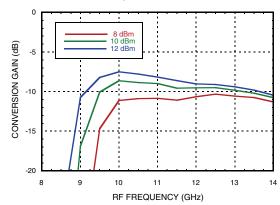
Input IP3, LSB vs. Temperature

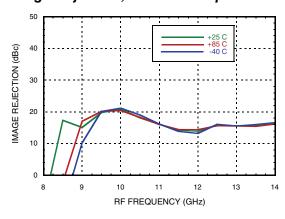

Input IP3, LSB vs. LO Drive


GaAs MMIC I/Q Mixer 8 - 12 GHz

Data Taken as SSB Downconverter with External IF 90° Hybrid, IF = 2000 MHz


Upconverter Performance, Conversion Gain, LSB vs. LO Drive


Upconverter Performance, Sideband Rejection, LSB vs. LO Drive,


Conversion Gain, USB vs. Temperature

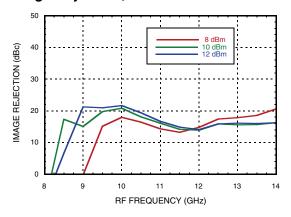
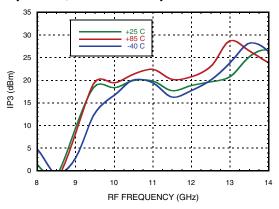
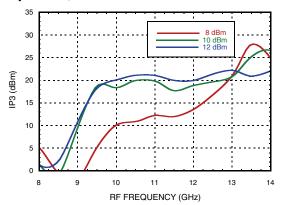

Conversion Gain, USB vs. LO Drive

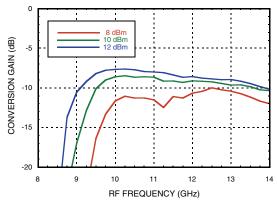
Image Rejection, USB vs. Temperature

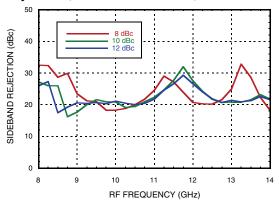
Image Rejection, USB vs. LO Drive





GaAs MMIC I/Q Mixer 8 - 12 GHz


Input IP3, USB vs. Temperature


Input IP3, USB vs. LO Drive

Upconverter Performance, Conversion Gain, USB vs. LO Drive

Upconverter Performance, Sideband Rejection, USB vs. LO Drive,

Harmonics of LO

LO Erog (CHz)	nLO Spur at RF Port				
LO Freq. (GHz)	1	2	3	4	
7	41.3	37.6	74.4	74.2	
8	36.3	36.3	52	82.1	
9	37.2	52.9	63.6	81.4	
10	36.8	56.4	65.5	100.4	
11	37.3	59.8	68.9	68.8	
12	37.4	56.2	65.3	78.9	
13	38.1	56.4	69.6	х	

LO = + 10 dBm

Values in dBc below LO level measured at RF Port.

MxN Spurious Outputs

	nLO				
mRF	0	1	2	3	4
0	xx	8	38	48	60
1	8	0	28	43	60
2	64	50	56	48	67
3	94	78	67	64	78
4	х	х	х	х	х

RF = 10 GHz @ -10 dBm

LO = 10.1 GHz @ +10 dBm

Data taken without IF hybrid

All values in dBc below IF power level

GaAs MMIC I/Q Mixer 8 - 12 GHz

Absolute Maximum Ratings

IF Input (At LO = 10 dBm and RF = -10 dBm)	+15.5 dBm	
RF Input (At 10 dBm LO power)	+16 dBm	
LO Input (At -10 dBm RF power)	+17 dBm	
Channel Temperature	175 °C	
Continuous Pdiss (T = 85°C) (derate 8.9 mW/°C above 85°C)	800 mW	
Thermal Resistance (channel to ground paddle)	112 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	
ESD Sensitivity (HBM)	Class 0, Passed 150V	

Outline Drawing

- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 5. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 6. PAD BURR LENGTH SHALL BE 0.15mm MAX. PAD BURR HEIGHT SHALL BE 0.05mm MAX.
- PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 8. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Package Information

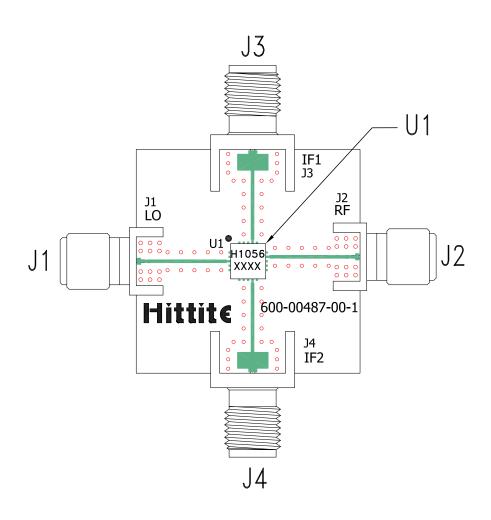
Part Number	Package Body Material	Lead Finish	MSL Rating [2]	Package Marking [1]
HMC1056LP4BE	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1	H1056 XXXX

^{[1] 4-}Digit lot number XXXX

[2] Max peak reflow temperature of 260 °C

GaAs MMIC I/Q Mixer 8 - 12 GHz

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1, 5-8, 10-12, 16, 18-20	N/C	These pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
2, 4, 13, 15	GND	These pins and the exposed ground paddle must be connected to RF/DC ground.	○ GND =
3	LO	This pin is AC coupled and matched to 50 Ohms .	L0 ○────
9	IF2	Differential IF input pins. For applications not requiring operation to DC, an off chip DC blocking capacitor should	IF1,IF2 O
17	IF1	be used. For operation to DC this pin must not source/sink more than 3mA of current or part non function and possible part failure will result.	
14	RF	This pin is matched to 50 Ohms.	RF ○

GaAs MMIC I/Q Mixer 8 - 12 GHz

Evaluation PCB

List of Materials for Evaluation PCB EVAL01-HMC1056LP4B[1]

Item	Description
J1, J2	PCB Mount SMA RF Connector, SRI
J3 - J4	PCB Mount SMA Connector, Johnson
U1	HMC1056LP4BE
PCB [2]	600-00487-00-1 Evaluation Board

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350

MIXERS - I/Q MIXERS, IRMS & RECEIVERS - SMT

Notes:

GaAs MMIC I/Q Mixer 8 - 12 GHz