

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

GaAs pHEMT MMIC MEDIUM POWER AMPLIFIER, 5.5 - 18 GHz

Typical Applications

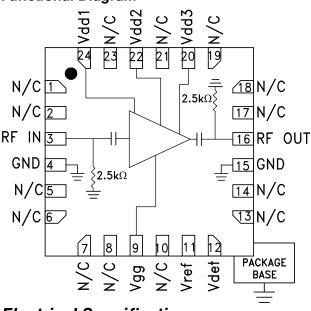
The HMC1082LP4E is ideal for:

- Point-to-Point Radios
- Point-to-Multi-Point Radios
- VSAT & SATCOM
- Marine Radar
- Military EW & ECM

Features

High Saturated Output Power: 26 dBm @ 26% PAE

High Output IP3: 35 dBm


High Gain: 22 dB

High P1dB Output Power: 24 dBm

DC Supply: +5V @ 220 mA

Compact 24 Lead 4x4 mm SMT Package: 16 mm²

Functional Diagram

General Description

The HMC1082LP4E is a GaAs pHEMT MMIC driver amplifier with an integrated temperature compensated on-chip power detector which operates between 5.5 and 18 GHz. The amplifier provides 22 dB of gain, +35 dBm Output IP3, and +24 dBm of output power at 1 dB gain compression, while requiring 220 mA from a +5V supply. The HMC1082LP4E is capable of supplying +26 dBm of saturated output power with 26 % PAE and is housed in a compact leadless 4x4 mm plastic surface mount package.

The HMC1082LP4E is an ideal driver amplifier for a wide range of applications including point-to-point radio from 5.5 to 18 GHz and marine radar at 9 GHz. The HMC1082LP4E may also be used for 6 to 18 GHz EW and ECM applications.

Electrical Specifications

 $T_A = +25^{\circ} \text{ C}$, Vdd1 = Vdd2 = Vdd3 = +5V, Idd = +220 mA (1)

Parameter	Min	Тур.	Max	Min	Тур.	Max	Min	Тур	Max	Units
Frequency Range	5.5 - 6.5		6.5 - 17			17 - 18			GHz	
Gain	21.5	23.5		20.5	22.5		20	22		dB
Gain Variation over temperature		0.0121			0.0101			0.015		dB/°C
Input Return Loss		22			12			7.5		dBm
Output Return Loss		10			14			17.5		dBm
Output Power for 1 dB Compression (P1dB)	21	24		21	24		20.5	23.5		dBm
Saturated Output Power (Psat)		25.5			26			24.5		dBm
Output Third Order Intercept (IP3) [2]		36			35			33.5		dBm
Supply Current (Idd)		220			220			220		mA

^[1] Adjust Vgg between -2 to 0V to achieve Idd = 220mA typical

^[2] Measurement taken at Pout / tone = +12dBm

HMC1082* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖳

View a parametric search of comparable parts.

EVALUATION KITS

· HMC1082LP4 Evaluation Board

DOCUMENTATION

Application Notes

- AN-1363: Meeting Biasing Requirements of Externally Biased RF/Microwave Amplifiers with Active Bias Controllers
- Broadband Biasing of Amplifiers General Application Note
- MMIC Amplifier Biasing Procedure Application Note
- Thermal Management for Surface Mount Components General Application Note

Data Sheet

HMC1082 Data Sheet

TOOLS AND SIMULATIONS 🖵

HMC1082 S-Parameters

REFERENCE MATERIALS 🖵

Quality Documentation

- Package/Assembly Qualification Test Report: LP3, LP4, LP5 & LP5G (QTR: 2014-00145)
- Semiconductor Qualification Test Report: PHEMT-F (QTR: 2013-00269)

DESIGN RESOURCES 🖵

- · HMC1082 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- · Symbols and Footprints

DISCUSSIONS

View all HMC1082 EngineerZone Discussions.

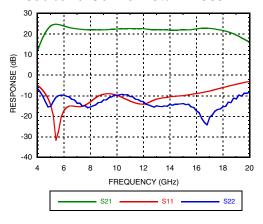
SAMPLE AND BUY 🖳

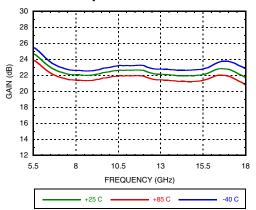
Visit the product page to see pricing options.

TECHNICAL SUPPORT 🖳

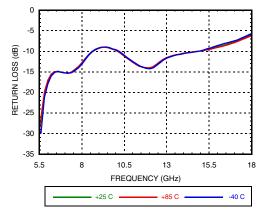
Submit a technical question or find your regional support number.

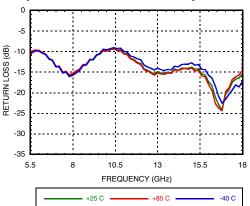
DOCUMENT FEEDBACK 🖳


Submit feedback for this data sheet.

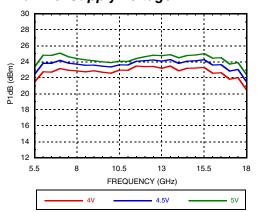


GaAs pHEMT MMIC MEDIUM POWER AMPLIFIER, 5.5 - 18 GHz


Broadband Gain & Return Loss

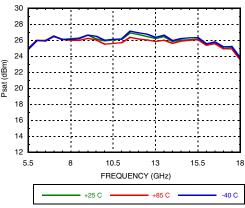

Gain vs. Temperature

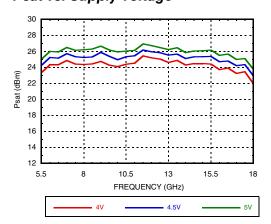

Input Return Loss vs. Temperature


Output Return Loss vs. Temperature

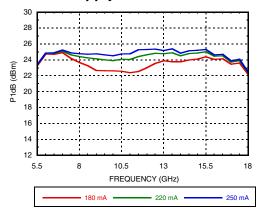
P1dB vs. Temperature

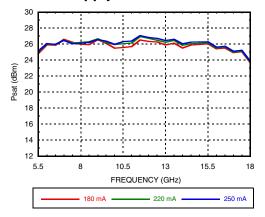
P1dB vs. Supply Voltage

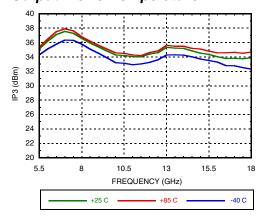


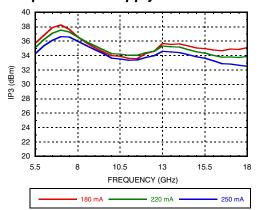


GaAs pHEMT MMIC MEDIUM POWER AMPLIFIER, 5.5 - 18 GHz


Psat vs. Temperature

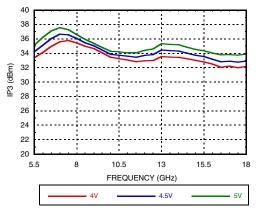

Psat vs. Supply Voltage

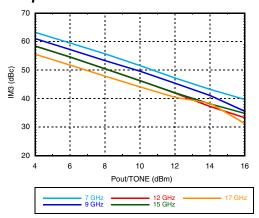

P1dB vs. Supply Current


Psat vs. Supply Current

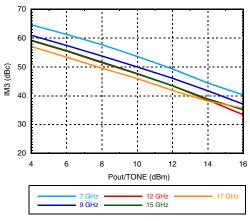
Output IP3 vs. Temperature [1]

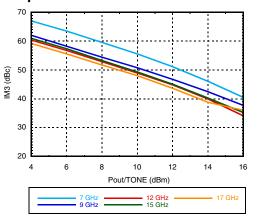
Output IP3 vs. Supply Current [1]

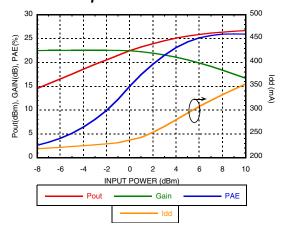

[1] Pout/Tone = +12 dBm

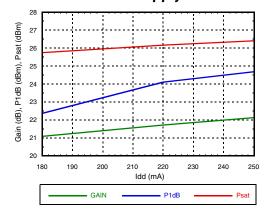


GaAs pHEMT MMIC MEDIUM POWER AMPLIFIER, 5.5 - 18 GHz


Output IP3 vs. Supply Voltage [1]

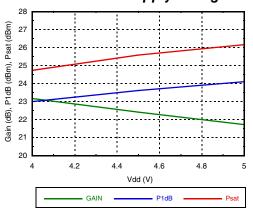

Output IM3 @ Vdd = +4V

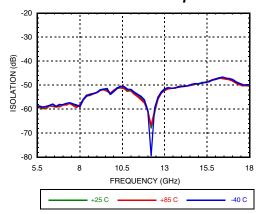

Output IM3 @ Vdd = +4.5V


Output IM3 @ Vdd = +5V

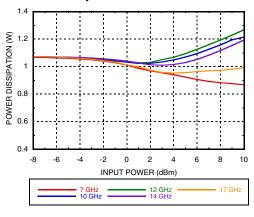
Power Compression @ 12 GHz

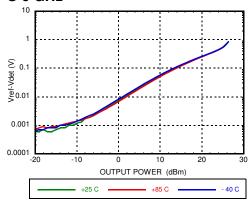
Gain & Power vs. Supply Current

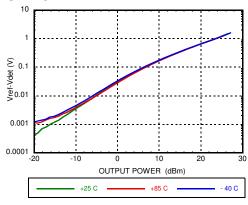

[1] Pout/Tone = +12 dBm

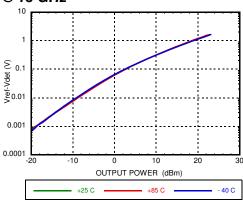

| ANALOG | DEVICES

GaAs pHEMT MMIC MEDIUM **POWER AMPLIFIER, 5.5 - 18 GHz**


Gain & Power vs. Supply Voltage


Reverse Isolation vs. Temperature


Power Dissipation


Detector Voltage vs. Temperature @ 6 GHz

Detector Voltage vs. Temperature @ 12 GHz

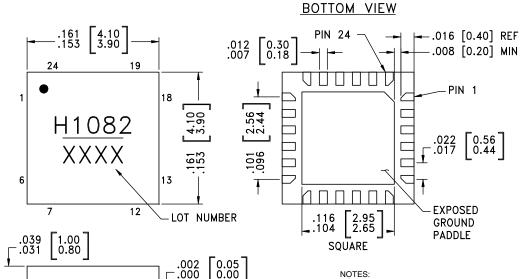
Detector Voltage vs. Temperature @ 18 GHz

GaAs pHEMT MMIC MEDIUM **POWER AMPLIFIER, 5.5 - 18 GHz**

Absolute Maximum Ratings

Drain Bias Voltage (Vdd)	5.5V
RF Input Power (RFIN)	20 dBm
Channel Temperature	175 °C
Continuous Pdiss (T=85 °C) (derate 20mW/°C	1.81W
Thermal Resistance (R _{TH}) (junction to ground paddle)	49.8 °C/W
Operating Temperature	-40°C to +85°C
Storage Temperature	-65°C to 150°C
ESD Sensitivity (HBM)	Class 0, Passed 100V

Typical Supply Current vs. Vdd


Vdd (V)	Idd (mA)
+4	220
+4.5	220
+5	220

Adjust Vgg1 to achieve Idd = 220mA

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

PLANE .003[0.08] C -C-

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED PCB LAND PATTERN.

Package Information

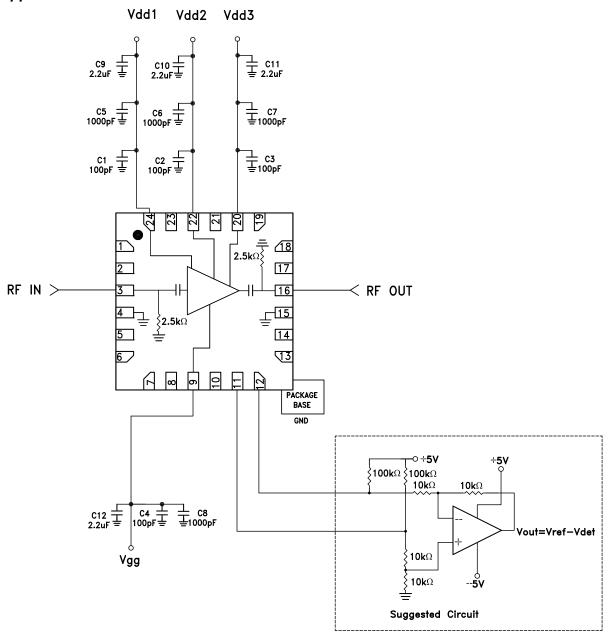
Part Number	Package Body Material	Lead Finish	MSL Rating [2]	Package Marking [1]	
HMC1082LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1	<u>H1082</u> XXXX	

^{[1] 4-}Digit lot number XXXX

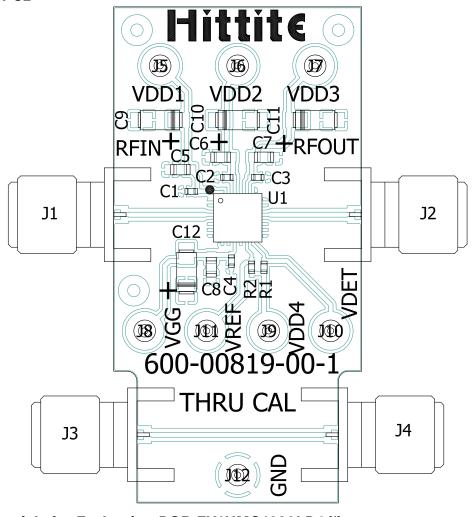
^[2] Max peak reflow temperature of 260 °C

GaAs pHEMT MMIC MEDIUM POWER AMPLIFIER, 5.5 - 18 GHz

Pin Descriptions


Pin Number	Function	Description	Pin Schematic		
1, 2, 5, 6, 7, 8, 10, 13, 14, 17, 18, 19, 21, 23	N/C	These pins are not connected internally, however all data shown herein was measured with these pins connected to RF/DC ground externally.			
3	RF IN	This pin is DC coupled and matched to 50 Ohms.	RFIN \bigcirc		
4, 15	GND	These pins and package bottom must be connected to RF/DC ground.	GND		
9	Vgg	Gate control for amplifier. External bypass capacitors of 1000pF, 100pF and 2.2uF are required.	Vgg		
11	Vref	DC bias of diode biased through external resistor used for temperature compensation of Vdet. See application circuit.	OVref		
12	Vdet	DC voltage representing RF output power rectified by diode which is biased through an external resistor. See application circuit.	OVdet		
16	RF OUT	This pin is DC coupled and matched to 50 Ohms.	RFOUT \bigcirc		
24, 22, 20	Vdd1, Vdd2, Vdd3	Drain bias voltage for amplifier. External bypass capacitors of 1000pF, 100pF and 2.2uF are required.	Vdd1,2,3		

GaAs pHEMT MMIC MEDIUM POWER AMPLIFIER, 5.5 - 18 GHz


Application Circuit

AMPLIFIERS - LINEAR & POWER - SMI

GaAs pHEMT MMIC MEDIUM POWER AMPLIFIER, 5.5 - 18 GHz

Evaluation PCB

List of Materials for Evaluation PCB EV1HMC1082LP4 [1]

Item	Description	
J1, J2	PCB Mount SMA RF Connector	
J5 - J12	DC Pin	
C1 - C4	100pF Capacitor, 0402 Pkg.	
C5 - C8	1000pF Capacitor, 0402 Pkg	
C9 - C12	2.2uF Capacitor, 0402 Pkg.	
R1, R2	40.2k Ohm Resistor, 0402 Pkg.	
U1	HMC1082LP4E	
PCB [2]	600-00819-00 Evaluation Board	

[1] Reference this number when ordering Complete Evaluation PCB

[2] Circuit Board Material: Rogers 4350 or Arlon 25FR

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

AMPLIFIERS - LINEAR & POWER - SMT

ANALOGDEVICES

GaAs pHEMT MMIC MEDIUM POWER AMPLIFIER, 5.5 - 18 GHz

Notes: