imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

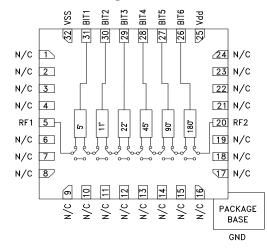
With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

v01 1216


GaAs MMIC 6-BIT DIGITAL PHASE SHIFTER, 4.8 - 6.2 GHz

Typical Applications

The HMC1133LP5E is ideal for:

- EW Receivers
- Weather & Military Radar
- Satellite Communications
- Beamforming Modules
- Phase Cancellation

Functional Diagram

Features

Low RMS Phase Error: 2.8° Low Insertion Loss: 5 dB High Linearity: +46 dBm Positive Control Logic 360° Coverage, LSB = 5.625° 32 Lead 5x5mm SMT Package: 25mm²

General Description

The HMC1133LP5E is a 6-bit digital phase shifter which is rated from 4.0 to 7 GHz, providing 360 degrees of phase coverage, with a LSB of 5.625 degrees. The HMC1133LP5E features very low RMS phase error of 2.8 degrees and extremely low insertion loss variation of \pm 0.4 dB across all phase states. This high accuracy phase shifter is controlled with positive control logic of 0/+5V The HMC1133LP5E is housed in a compact 5x5 mm plastic leadless SMT package and is internally matched to 50 Ohms with no external components.

Electrical Specifications $T_{A} = +25^{\circ}$ C, Vss= -5V, Vdd= +5V, BIT1 to BIT6 = 0/ +5V, 50 Ohm System

A , , , , ,		-		1
Parameter	Min.	Тур.	Max.	Units
Frequency Range	4.8		6.2	GHz
Insertion Loss*	3.5		6.8	dB
Input Return Loss*		13		dB
Output Return Loss*		15		dB
Phase Error*		±5.625	±10	deg
RMS Phase Error		2.8		deg
Amplitude Settling Time (50% cntl to +/- 0.1dB margin of final RFout)		125		nS
Phase Settling Time (50% cntl to +/-1 degree margin of final RFout)		100		nS
Insertion Loss Variation*		±0.4		dB
Input Power for 1 dB Compression		30		dBm
Input Third Order Intercept		46		dBm
Control Voltage Current		10		μA
Bias Control Current		13.5		mA
	·		·	

*Note: Major States Shown

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC1133* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

• EV1HMC1133LP5 Evaluation Board

DOCUMENTATION

Data Sheet

• HMC1133LP5E: GaAs MMIC 6-BIT Digital Phase Shifter, 4.8 - 6.2 GHz Data Sheet

DESIGN RESOURCES

- HMC1133 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

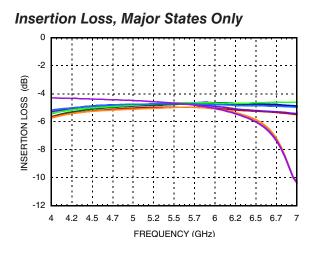
DISCUSSIONS

View all HMC1133 EngineerZone Discussions.

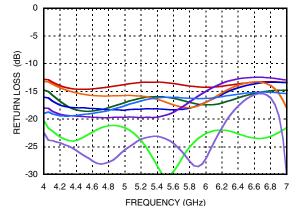
SAMPLE AND BUY

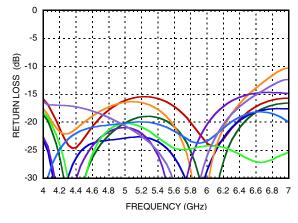
Visit the product page to see pricing options.

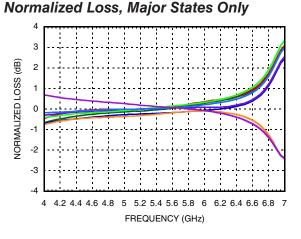
TECHNICAL SUPPORT


Submit a technical question or find your regional support number.

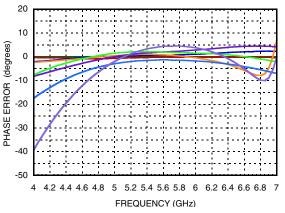
DOCUMENT FEEDBACK


Submit feedback for this data sheet.

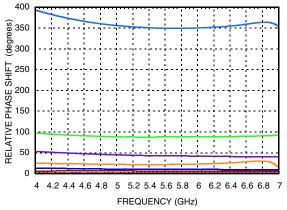

GaAs MMIC 6-BIT DIGITAL PHASE SHIFTER, 4.8 - 6.2 GHz

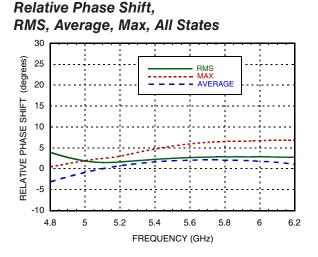


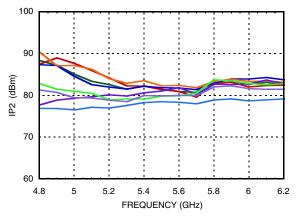
Input Return Loss, Major States Only

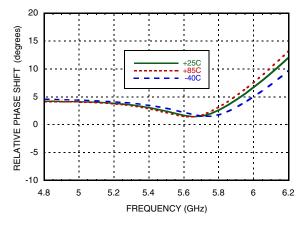


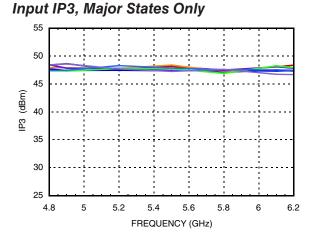
Output Return Loss, Major States Only



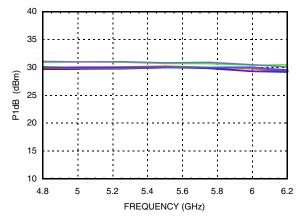



For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

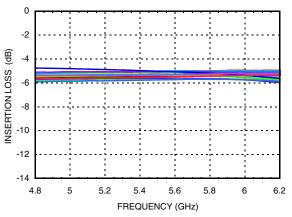

GaAs MMIC 6-BIT DIGITAL PHASE SHIFTER, 4.8 - 6.2 GHz



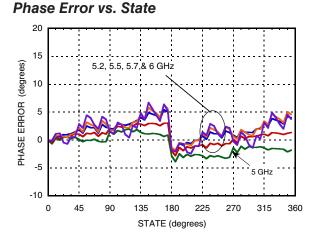
Input IP2, Major States Only



RMS Phase Error vs. Temperature



Input P1dB, Major States Only


Insertion Loss vs. Temperature, Major States Only

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

GaAs MMIC 6-BIT DIGITAL PHASE SHIFTER, 4.8 - 6.2 GHz

Bias Voltage & Current

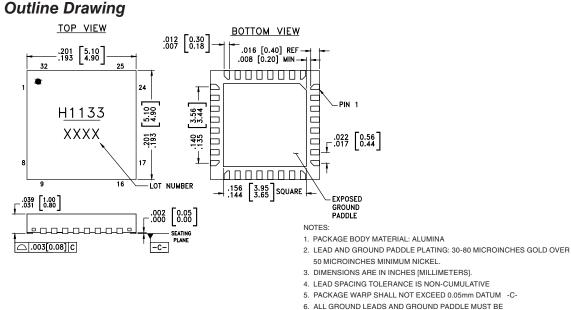
Vdd	Idd	
5.0	6mA	
Vss	lss	
-5.0	7.5mA	

Control Voltage

State	Bias Condition	
Low (0)	0 to 0.2 Vdc	
High (1)	High (1) Vdd ±0.2 Vdc @ 10 μA Typ.	

Absolute Maximum Ratings

Input Power (RFIN)	29 dBm (T= +85 °C)	
Bias Voltage Range (Vdd)	-0.2 to +7V	
Bias Voltage Range (Vss)	+0.2 to -7V	
Channel Temperature (Tc)	150 °C	
Thermal Resistance (channel to ground paddle)	109 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	
ESD sensitivity (HBM)	Class1A (passed 250V)	


ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Truth Table

Control Voltage Input					Phase Shift (Degrees)		
Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	RFIN - RFOUT	
0	0	0	0	0	0	Reference*	
1	0	0	0	0	0	5.625	
0	1	0	0	0	0	11.25	
0	0	1	0	0	0	22.5	
0	0	0	1	0	0	45.0	
0	0	0	0	1	0	90.0	
0	0	0	0	0	1	180.0	
1	1	1	1	1	1	354.375	
Any combination of the above states will provide a phase shift approximately equal to the sum of the bits selected. *Reference corresponds to monotonic setting							

GaAs MMIC 6-BIT DIGITAL PHASE SHIFTER, 4.8 - 6.2 GHz

SOLDERED TO PCB RF GROUND.

Package Information

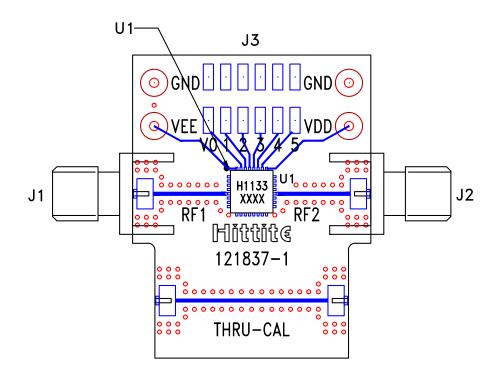
Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[2]
HMC1133LP5E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL3 ^[1]	<u>H1133</u> XXXX

[1] Max peak reflow temperature of 260 °C

[2] 4-Digit lot number XXXX

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1 - 4, 6 - 19, 21 - 24	N/C	No connection required. These pins may be connected to RF/DC ground without affecting performance.	
5	RF1	This port is DC coupled and matched to 50 Ohms.	RF1 0
26 - 31	BIT6, BIT5, BIT4, BIT3, BIT2, BIT1	Control Input. See truth table and control voltage tables.	
32	Vss	Voltage supply.	
25	Vdd	Voltage supply.	
20	RF2	This port is DC coupled and matched to 50 Ohms.	RF2
	GND	Exposed ground paddle must be connected to RF/DC ground	


For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

^{7.} CLASSIFIED AS MOISTURE SENSITIVITY LEVEL (MSL) 1.

GaAs MMIC 6-BIT DIGITAL PHASE SHIFTER, 4.8 - 6.2 GHz

Evaluation PCB

List of Materials for Evaluation PCB EV1HMC1133LP5 [1][3]

Item	Description	
J1 - J2	PCB Mount SMA RF Connector	
J3 - J4	Molex Header 2mm	
U1	HMC1133LP5 6-Bit Digital Phase Shifter	
PCB [2]	121837 Evaluation PCB	

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350 or Arlon 25FR

[3] Please refer to part's pin description and functional diagram for pin out assignments on evaluation board.

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Analog Devices upon request.