

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

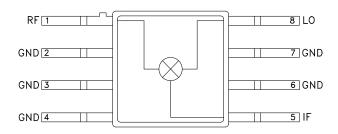
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

GaAs MMIC SMT DOUBLE-BALANCED MIXER, 1.8 - 5 GHz

Typical Applications

The HMC128G8 is ideal for:


- Base Station
- MMDS
- WirelessLAN
- Wireless Local Loop

Features

Conversion Loss: 10 dB

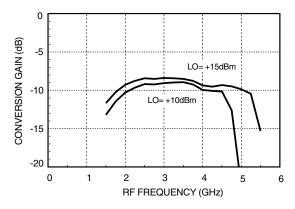
LO to RF and IF Isolation: >30 dB High Third-Order Intercept: +18 dB

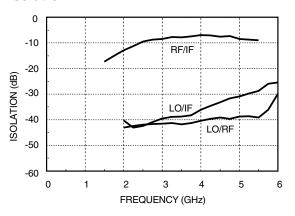
Functional Diagram

General Description

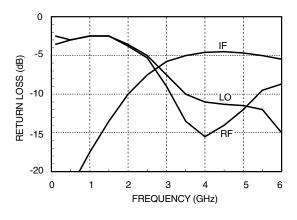
The HMC128G8 is a miniature double-balanced mixer in a hermetic surface mount package that can be used as an upconverter or downconverter. The device is a passive diode/balun type mixer with high dynamic range. Noise figure is essentially equal to the conversion loss. The mixer can handle larger signal levels than most active mixers due to the high third order intercept. MMIC implementation provides exceptional balance in the circuit resulting in high LO/RF and LO/IF isolations.

Electrical Specifications, $T_A = +25^{\circ}$ C, LO Drive = +15 dBm


Parameter	Min.	Тур.	Max.	Units
Frequency Range, RF & LO	1.8 - 5.0		GHz	
Frequency Range, IF		DC - 2		GHz
Conversion Loss		10	12	dB
Noise Figure (SSB)		10	12	dB
LO to RF Isolation	28	40		dB
LO to IF Isolation	20	30		dB
IP3 (Input)	13	18		dBm
IP2 (Input)	35	40		dBm
1 dB Gain Compression (Input)	5	10		dBm



GaAs MMIC SMT DOUBLE-BALANCED MIXER, 1.8 - 5 GHz

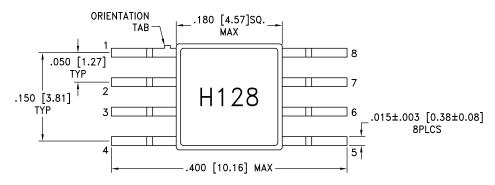

Conversion Gain

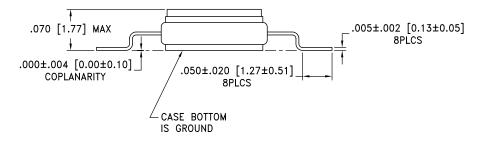
Isolation

Return Loss

Distortion and 1dB Compression vs. LO Drive Level

	Disto		
LO Drive	RF(f1) = 3.01 GHz RF(f2) = 3.00 GHz LO = 3.5 GHz RF Level = 0 dBm		1 dB Compression
(dBm)	IP3 (dBm)	IP2 (dBm)	P1dB (dBm)
+10	16	38	8
+13	18	40	10
+15	18	40	10

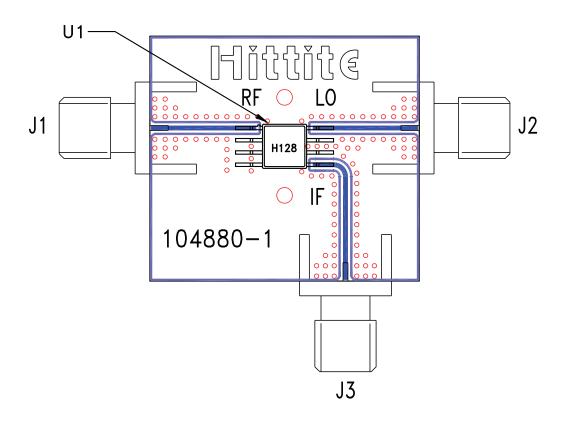

GaAs MMIC SMT DOUBLE-BALANCED MIXER, 1.8 - 5 GHz


Absolute Maximum Ratings

LO Drive	+27 dBm
Storage Temperature	-65 to +150 °C
Operating Temperature	-55 to +125 °C

Outline Drawing

NOTES:


- 1. PACKAGE MATERIAL: ALUMINA LOADED BOROSILICATE GLASS.
- 2. LEAD, BASE, COVER MATERIAL: KOVAR™ (#7052 CORNING).
- 3. PLATING: ELECTROLYTIC GOLD 50 MICROINCHES MIN., OVER ELECTROLYTIC NICKEL 50 MICROINCHES MIN.
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 5. TOLERANCES: $\pm .005$ [0.13] UNLESS OTHERWISE SPECIFIED.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

GaAs MMIC SMT DOUBLE-BALANCED MIXER, 1.8 - 5 GHz

Evaluation PCB

List of Materials for Evaluation PCB 104882 [1]

Item	Description
J1 - J3	PCB Mount SMA RF Connector
U1	HMC128G8 Mixer
PCB [2]	104880 Evaluation Board

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350