: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Typical Applications

The HMC129LC4 is ideal for:

- Microwave \& VSAT Radios
- Test Equipment
- Military EW, ECM, C ${ }^{3}$ I

Functional Diagram

GaAs MMIC DOUBLE-BALANCED MIXER, 4-8 GHz

Electrical Specifications, $T_{A}=+25^{\circ} \mathrm{C}$, LO Drive $=+15 \mathrm{dBm}$ *

Parameter	Min.	Typ.	Max.	Units
Frequency Range, RF \& LO		$4.0-8.0$		
Frequency Range, IF		$\mathrm{DC}-3.0$		
Conversion Loss		7	GHz	
Noise Figure (SSB)		7	dB	
LO to RF Isolation	30	40	dB	
LO to IF Isolation	32	40	dB	
IP3 (Input)		17	dB	
IP2 (Input)		50	dBm	
1 dB Gain Compression (Input)		10	dBm	

* Unless otherwise noted, all measurements performed as downconverter, IF $=100 \mathrm{MHz}$

HMC129LC4
v03.0414

Conversion Gain vs. Temperature
LO = +15 dBm

Conversion Gain vs. LO Drive

IF Bandwidth @ LO = +15 dBm

GaAs MMIC DOUBLE-BALANCED MIXER, 4-8 GHz

Isolation @ LO = +15 dBm

Return Loss @ LO = +15 dBm

Upconverter Performance
Conversion Gain vs. LO Drive

HMC129LC4
v03.0414

Input IP3 vs. LO Drive

Input IP2 vs. LO Drive

Input P1dB vs.
Temperature @ LO = +15 dBm

GaAs MMIC DOUBLE-BALANCED MIXER, 4-8 GHz

Input IP3 vs.
Temperature @ LO = +15 dBm

Input IP2 vs.
Temperature @ LO = +15 dBm

Harmonics of LO

	n LO Spur @ RF Port			
LO Freq. (GHz)	1	2	3	4
3	55	47	57	68
4	42	50	42	69
5	42	54	54	56
6	39	54	40	66
7	35	55	35	63
8	35	63	45	82
9	29	45	37	81
10	15	42	35	88
LO = +15 dBm All values in dBc below input LO level measured at RF port				

GaAs MMIC DOUBLE－BALANCED MIXER，4－8 GHz

MxN Spurious＠IF Port

	nLO				
mRF	0	1	2	3	4
0	$x x$	10	25	13	41
1	9	0	33	44	46
2	78	76	70	78	86
3	88	91	87	64	81
4	97	102	104	109	110

RF Freq．$=6.1 \mathrm{GHz} @-10 \mathrm{dBm}$
LO Freq．$=6.0 \mathrm{GHz} @+15 \mathrm{dBm}$
Measured as downconverter

Absolute Maximum Ratings

RF／IF Input	+15 dBm
LO Drive	+27 dBm
IF DC Current	4 mA
Channel Temperature	$150^{\circ} \mathrm{C}$
Continuous Pdiss $\left(\mathrm{T}=85^{\circ} \mathrm{C}\right.$ ） （derate $4.957 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $85^{\circ} \mathrm{C}$ ）	124 mW
Thermal Resistance （channel to ground paddle）	$131.4^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Operating Temperature	-40 to $+85^{\circ} \mathrm{C}$
ESD Sensitivity（HBM）	Class 1 A

Outline Drawing

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ${ }^{[2]}$
HMC129LC4	Alumina, White	Gold over Nickel	MSL3 ${ }^{[1]}$	H129 XXXX

[^0]Pin Descriptions
$\left.\begin{array}{|c|c|c|c|}\hline \text { Pin Number } & \text { Function } & \text { Description } \\ \hline \begin{array}{c}1,5-7,11-14, \\ 18-24\end{array} & \text { N/C } \\ \hline 15,17\end{array} \quad \begin{array}{c}\text { No Connection. These pins may be connected to RF/DC ground. } \\ \text { Performance will not be affected. }\end{array}\right]$

Evaluation PCB

List of Materials for Evaluation РCB $109728{ }^{[1]}$

Item	Description
J1- J3	PCB Mount SMA Connector
U1	HMC129LC4
PCB [2]	109726 Evaluation Board

[1] Reference this number when ordering complete evaluation PCB
[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

[^0]: [1] Max peak reflow temperature of $260^{\circ} \mathrm{C}$
 [2] 4-Digit lot number XXXX

