

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

GaAs MMIC DOUBLE-BALANCED MIXER, 6 - 20 GHz

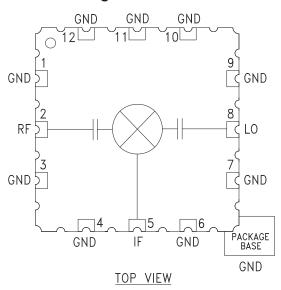
Typical Applications

The HMC144LH5 is ideal for:

- Telecom Infrastructure
- Test Instrumentation
- Military Radio, Radar & ECM
- Space Systems

Features

Input IP3: +24 dBm


LO/RF Isolation: 35 dB

IF Bandwidth: DC to 3 GHz

RoHS Compliant Hermetic SMT Package, 25 mm²

Screening to MIL-PRF-38535 (Class B or S) Available

Functional Diagram

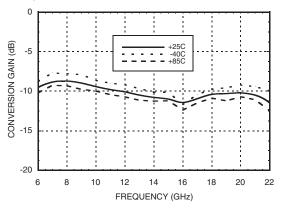
General Description

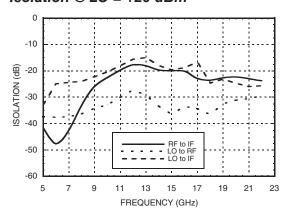
The HMC144LH5 is a Double-Balanced MMIC Mixer housed in a hermetic SMT leadless package which can be used as an upconverter or downconverter from 6 to 20 GHz. Broadband operation and excellent isolations are provided by on-chip baluns, while no external components or DC bias are required. The HMC144LH5 is a more reliable alternative to hybrid diode mixers, assuring consistent conversion loss and isolation performance over multiple production lots. The HMC144LH5 allows the use of surface mount manufacturing techniques and is suitable for high reliability, military, industrial and space applications.

Electrical Specifications, $T_A = +25^{\circ}$ C

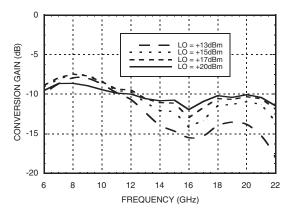
Parameter	IF = 100 MHz LO = +20 dBm					Units	
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Frequency Range, RF & LO		6 - 12			12 - 20		GHz
Frequency Range, IF		DC - 3			DC - 3		GHz
Conversion Loss		9.5	11.5		11	13	dB
Noise Figure (SSB)		9.5	11.5		11	13	dB
LO to RF Isolation	23	35		23	35		dB
LO to IF Isolation	10	20		10	20		dB
RF to IF Isolation	12	25		12	22		dB
IP3 (Input)		24			24		dBm
1 dB Compression (Input)	12	15		12	15		dBm

^{*} Unless otherwise noted, all measurements performed as downconverter, IF= 100 MHz.

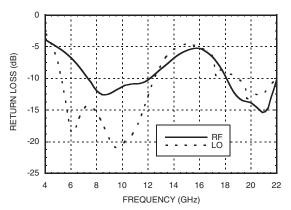

MIXER, 6 - 20 GHz


v00.1206

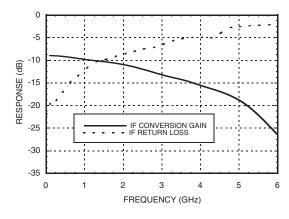
Conversion Gain vs. Temperature @ LO = +20 dBm

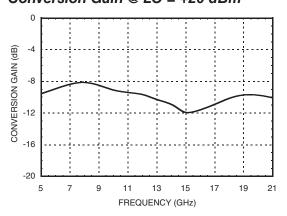


Isolation @ LO = +20 dBm

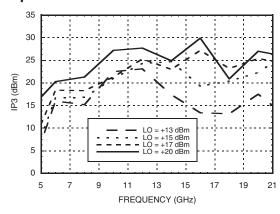


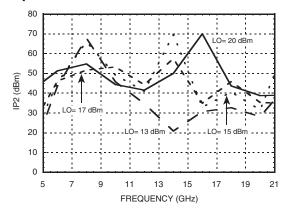
GaAs MMIC DOUBLE-BALANCED


Conversion Gain vs. LO Drive


Return Loss @ LO = +20 dBm

IF Bandwidth @ LO = +20 dBm


Upconverter Performance Conversion Gain @ LO = +20 dBm



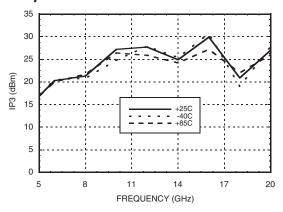
Input IP3 vs. LO Drive*

Input IP2 vs. LO Drive *

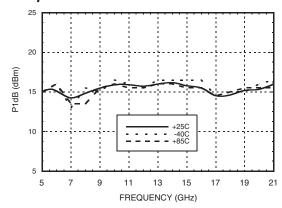
MxN Spurious @ IF Port

	nLO				
mRF	0	1	2	3	4
0	XX	-23	18	2	23
1	8	0	25	14	37
2	65	65	62	80	62
3	85	86	83	90	82
4	86	87	95	100	105

RF = 12 GHz @ -10 dBm


LO = 12.1 GHz @ 20 dBm

All values in dBc relative to the IF power level.


Measured as downconverter.

GaAs MMIC DOUBLE-BALANCED MIXER, 6 - 20 GHz

Input IP3 vs. Temperature @ LO = +20 dBm*

Input P1dB vs. Temperature @ LO = +20 dBm

Harmonics of LO

	nLO Spur @ RF Port			
LO Freq. (GHz)	1	2	3	4
6	37	34	56	46
8	36	38	61	50
10	33	43	66	63
12	27	37	48	60
14	35	41	50	N/A
16	34	42	58	N/A
18	35	55	N/A	N/A
20	30	54	N/A	N/A

LO = +20 dBm

All values in dBc below input LO level @ RF port.

^{*} Two-tone input power = 0 dBm each tone, 1 MHz spacing.

GaAs MMIC DOUBLE-BALANCED MIXER. 6 - 20 GHz

Absolute Maximum Ratings

RF / IF Input	+15 dBm
LO Drive	+27 dBm
IF DC Current	±2 mA
Channel Temperature	150 °C
Continuous Pdiss (T = 85 °C) (derate 9.83 mW/°C above 85 °C)	640 mW
Thermal Resistance (R _{TH}) (Channel to package bottom)	101.7 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A

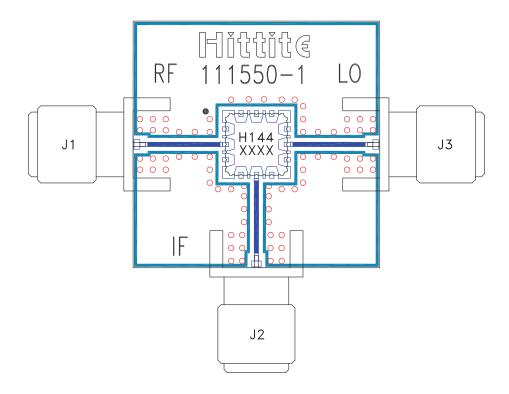
Outline Drawing

NOTES:

- 1. PACKAGE BODY MATERIAL: CERAMIC & KOVAR
- 2. LEAD AND GROUND PADDLE PLATING: GOLD 40-80 MICROINCHES
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 5. PAD BURR LENGTH 0.15mm MAX. PAD BURR HEIGHT 0.25mm MAX
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

GaAs MMIC DOUBLE-BALANCED **MIXER**, 6 - 20 GHz

Pin Descriptions


Pin Number	Funciton	Description	Interface Schematic	
1, 3, 4, 6, 7, 9-12	GND	These pins and package bottom must be connect to RF/DC ground.	= O GND	
2	RF	This pin is AC coupled and matched to 50 Ohms.	RFO—	
5	IF	This pin is DC coupled. For applications not requiring operation to DC, this port should be DC blocked externally using a series capacitor whose value has been chosen to pass the necessary IF frequency range. For operation to DC, this pin must not source/ sink more than 2 mA of current or die non-function and possible die failure will result.	IF1,IF2 O	
8	LO	This pin is AC coupled and matched to 50 Ohms.	L00	

GaAs MMIC DOUBLE-BALANCED MIXER, 6 - 20 GHz

Evaluation PCB

List of Materials for Evaluation PCB 116588 [1]

Item	Description
J1 - J3	PCB Mount SMA RF Connector, SRI
U1	HMC144LH5
PCB [2]	111550 Evaluation Board

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.