

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

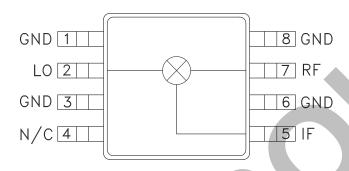
HMC219AMS8 / 219AMS8E

v00.0810

GaAs MMIC SMT DOUBLE-BALANCED MIXER, 4.5 - 9 GHz

Typical Applications

The HMC219AMS8 / HMC219AMS8E is ideal for:


- UNII & HiperLAN
- ISM
- Microwave Radios

Features

Ultra Small Package: MSOP8

Conversion Loss: 8.5 dB LO / RF Isolation: 25 dB

Functional Diagram

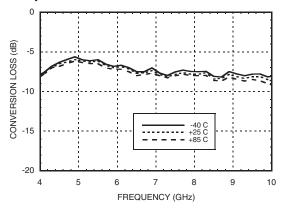
General Description

The HMC219AMS8 & HMC219AMS8E are ultra miniature double-balanced mixers in 8 lead plastic surface mount packages (MSOP). This passive MMIC mixer is constructed of GaAs Schottky diodes and novel planar transformer baluns on the chip. The device can be used as an upconverter, downconverter, bi-phase (de)modulator, or phase comparator. The consistent MMIC performance will improve system operation and assure regulatory compliance.

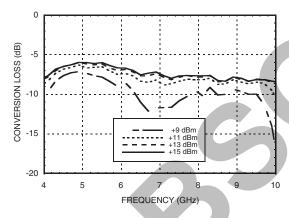
Electrical Specifications, $T_A = +25^{\circ}$ C, As a Function of LO Drive

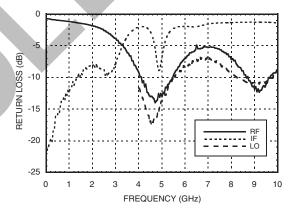
Parameter		O = +13 dBm F = 100 MHz			O = +11 dBm F = 100 MHz		Units
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Frequency Range, RF & LO	4.5 - 9.0			4.5 - 8.6			GHz
Frequency Range, IF	DC - 2.5			DC - 2.5			GHz
Conversion Loss		8.5	10		8.5	10	dB
Noise Figure (SSB)		8.5	10		8.5	10	dB
LO to RF Isolation	17	25		20	25		dB
LO to IF Isolation	17	25		20	25		dB
IP3 (Input)	15	21		15	21		dBm
1 dB Gain Compression (Input)	7	10		5	8		dBm

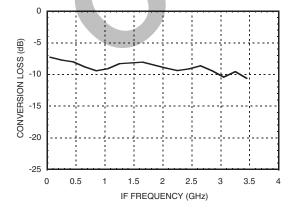
GaAs MMIC SMT DOUBLE-

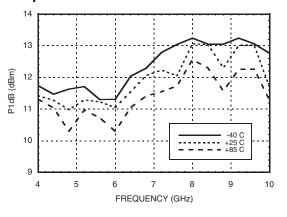

BALANCED MIXER, 4.5 - 9 GHz


v00.0810


Conversion Loss vs Temperature @ LO = +13 dBm

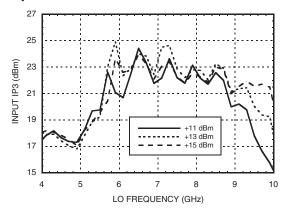

Isolation @ LO = +13 dBm


Conversion Loss vs. LO Drive

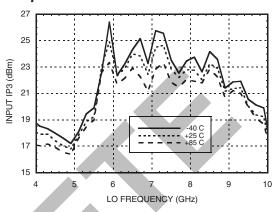

Return Loss @ LO = +13 dBm

IF Bandwidth @ LO = +13 dBm

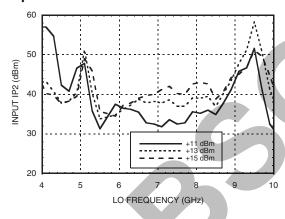
P1dB vs. Temperature LO = +13 dBm

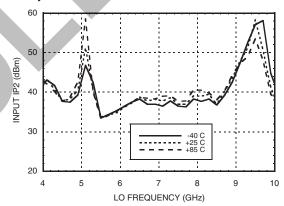


v00.0810



GaAs MMIC SMT DOUBLE-BALANCED MIXER, 4.5 - 9 GHz


Input IP3 vs. LO Drive


Input IP3 vs. Temperature @ LO = +13 dBm

Input IP2 vs. Drive

Input IP2 vs. Temperature @ LO = +13 dBm

ANALOGDEVICES

HMC219AMS8 / 219AMS8E

v00.0810

GaAs MMIC SMT DOUBLE-BALANCED MIXER, 4.5 - 9 GHz

MxN Spurious Outputs

	nLO				
mRF	0	1	2	3	4
0	xx	9	12	16	34
1	19	0	22	32	49
2	62	63	59	62	66
3	80	69	82	69	79
4	79	81	81	80	83

RF = 6 GHz @ -10 dBm LO = 6.1 GHz @ +13 dBm

All values in dBc below the IF power level (-1RF + 1LO).

Harmonics of LO

LO Freq.	nLO Spur at RF Port				
(GHz)	1	2	3	4	
4.0	31	22	32	58	
5.0	32	21	30	47	
6.0	40	28	28	49	
7.0	32	35	53	48	
8.0	27	40	57	55	
9.0	22	52	48	xx	

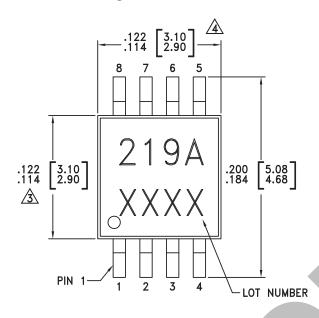
LO = +13 dBm

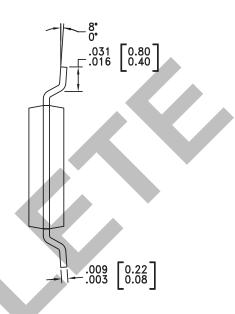
Values in dBc below input LO level measured at the RF port.

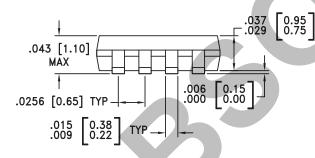
Absolute Maximum Ratings

RF / IF Input	+13 dBm
LO Drive	+27 dBm
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A

ÉLECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS




v00.0810



GaAs MMIC SMT DOUBLE-BALANCED MIXER, 4.5 - 9 GHz

Outline Drawing

NOTES:

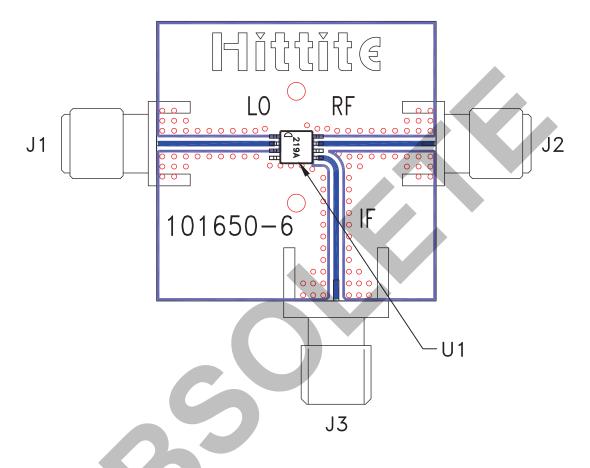
- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- M DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.

 5. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC219AMS8	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	219A XXXX
HMC219AMS8E	MC219AMS8E RoHS-compliant Low Stress Injection Molded Plastic		MSL1 [2]	<u>219A</u> XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX



v00.0810

GaAs MMIC SMT DOUBLE-BALANCED MIXER, 4.5 - 9 GHz

Evaluation Circuit Board

List of Materials for Evaluation PCB 103350 [1]

Item		Descripti	ion	
J1 - J3	$\overline{}$	PCB Mou	unt S	SMA RF Connector
U1		HMC219	AMS	88 / HMC219AMS8E Mixer
PCB [2]		101650 E	Evalu	uation Board

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350