

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

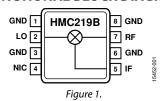
2.5 GHz to 7.0 GHz GaAs, MMIC Fundamental Mixer

Data Sheet HMC219B

FEATURES

Conversion loss: 9 dB typical LO to RF isolation: 40 dB typical LO to IF isolation: 35 dB typical RF to IF isolation: 22 dB typical Input IP3: 18 dBm typical Input P1dB: 11 dBm typical Input IP2: 55 dBm typical Passive double balanced topology 8-lead, 3 mm × 3 mm, MINI_SO_EP

APPLICATIONS


Microwave radios

High performance radio local area network (HiperLAN) and unlicensed national information infrastructure (U-NII) Industrial, scientific, and medical (ISM)

GENERAL DESCRIPTION

The HMC219B is an ultraminiature, general-purpose, double balanced mixer in an 8-lead plastic surface mini small outline package with exposed pad (MINI_SO_EP). This passive monolithic microwave integrated circuit (MMIC) mixer is fabricated in a gallium arsenide (GaAs) metal semiconductor field effect transistor (MESFET) process and requires no external components or matching circuitry. The device can be used as an upconverter, downconverter, biphase demodulator, or phase comparator from 2.5 GHz to 7.0 GHz.

FUNCTIONAL BLOCK DIAGRAM

The HMC219B provides excellent local oscillator (LO) to radio frequency (RF) isolation and LO to intermediate frequency (IF) isolation due to optimized balun structures. The RoHS compliant HMC219B eliminates the need for wire bonding and is compatible with high volume surface-mount manufacturing techniques. The consistent MMIC performance improves system operation and assures regulatory compliance with HiperLAN, U-NII, and ISM.

HMC219B* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖵

View a parametric search of comparable parts.

EVALUATION KITS

• HMC219B Evaluation Board

DOCUMENTATION

Data Sheet

 HMC219B: 2.5 GHz to 7.0 GHz GaAs, MMIC Fundamental Mixer Data Sheet

DESIGN RESOURCES 🖵

- HMC219B Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- · Symbols and Footprints

DISCUSSIONS

View all HMC219B EngineerZone Discussions.

SAMPLE AND BUY 🖵

Visit the product page to see pricing options.

TECHNICAL SUPPORT 🖳

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK 🖳

Submit feedback for this data sheet.

TABLE OF CONTENTS

Features]
Applications	. 1
Functional Block Diagram	1
General Description	1
Revision History	2
Specifications	3
Absolute Maximum Ratings	4
Thermal Resistance	. 4
ESD Caution	. 4
Pin Configuration and Function Descriptions	. 5
Interface Schematics	

Typical Performance Characteristics	6
Downconverter Performance	6
Upconverter Performance	18
Spurious and Harmonics Performance	24
Theory of Operation	25
Applications Information	26
Typical Application Circuit	26
Evaluation PCB Information	26
Outline Dimensions	27
Ordering Guide	27

REVISION HISTORY

1/2017—Revision 0: Initial Version

SPECIFICATIONS

 $T_A = 25$ °C, IF = 100 MHz, LO power = 13 dBm, and all measurements performed as downconverter with lower sideband selected, unless otherwise noted.

Table 1.

Parameter	Min	Тур	Max	Unit
FREQUENCY RANGE				
RF	2.5		7.0	GHz
LO	2.5		7.0	GHz
IF	DC		3	GHz
LO DRIVE LEVEL		13		dBm
PERFORMANCE				
Conversion Loss		9	11	dB
Single-Sideband (SSB) Noise Figure		8		dB
Input Third-Order Intercept (IP3)	15	18		dBm
Input Second-Order Intercept (IP2)		55		dBm
LO to RF Isolation	34	40		dB
LO to IF Isolation	29	35		dB
RF to IF Isolation		22		dB
Input 1 dB Compression Point (P1dB)		11		dBm
RF Return Loss		10		dB
LO Return Loss		25		dB
IF Return Loss		12		dB

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
RF Input Power	25 dBm
LO Input Power	27dBm
IF Input Power	25 dBm
IF Source and Sink Current	6 mA
Continuous Power Dissipation, P_{DISS} ($T_A = 85^{\circ}$ C, Derate 10.81 mW/°C Above 85°C)	972 mW
Maximum Junction Temperature	175°C
Maximum Peak Reflow Temperature (MSL1) ¹	260°C
Operating Temperature Range	−40°C to +85°C
Storage Temperature Range	−65°C to +125°C
Electrostatic Discharge (ESD) Sensitivity	
Human Body Model (HBM)	1500 V (Class 1C)
Field Induced Charged Device Model (FICDM)	750 V (Class C4)

¹ See the Ordering Guide.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

Table 3. Thermal Resistance

Package Type	θ_{JA}	θ _{JC}	Unit
RM-8	194.9	92.5	°C/W

 $^{^1}$ See JEDEC standard JESD51-2 for additional information on optimizing the thermal impedance (PCB with 3 \times 3 vias).

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

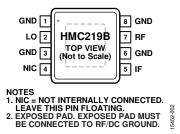


Figure 2. Pin Configuration

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1, 3, 6, 8	GND	Ground. Connect the package bottom to RF/dc ground. See Figure 3 for the GND interface schematic.
2	LO	Local Oscillator. This pin is dc-coupled and matched to 50 Ω . See Figure 4 for the LO interface schematic.
4	NIC	Not Internally Connected. Leave this pin floating.
5	IF	Intermediate Frequency. This pin is dc-coupled. For applications not requiring operation to dc, externally block this pin using a series capacitor with a value chosen to pass the necessary IF frequency range. For operation to dc, this pin must not source or sink more than 6 mA of current or device nonfunction and possible device failure results. See Figure 5 for the IF interface schematic.
7	RF	Radio Frequency. This pin is dc-coupled and matched to 50 Ω . See Figure 6 for the RF interface schematic.

INTERFACE SCHEMATICS

Figure 3. GND Interface Schematic

Figure 4. LO Interface Schematic

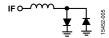


Figure 5. IF Interface Schematic

Figure 6. RF Interface Schematic

TYPICAL PERFORMANCE CHARACTERISTICS

DOWNCONVERTER PERFORMANCE

Data taken as downconverter, lower sideband, $T_A = 25$ °C, IF = 100 MHz, and LO power = 13 dBm, unless otherwise noted.

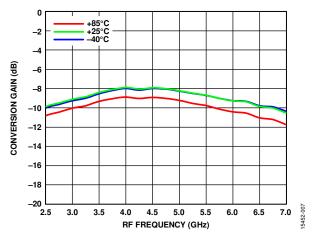


Figure 7. Conversion Gain vs. RF Frequency at Various Temperatures

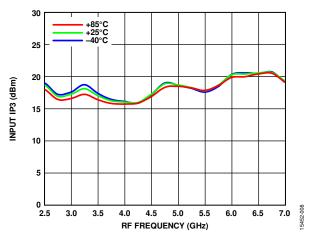


Figure 8. Input IP3 vs. RF Frequency at Various Temperatures

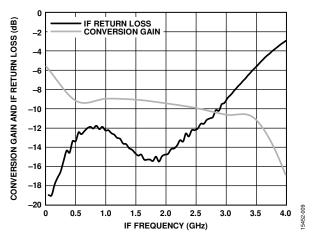


Figure 9. Conversion Gain and IF Return Loss vs. IF Frequency

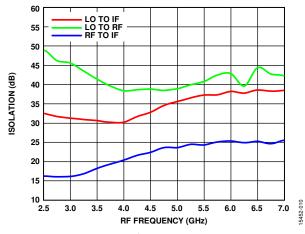


Figure 10. Isolation vs. RF Frequency

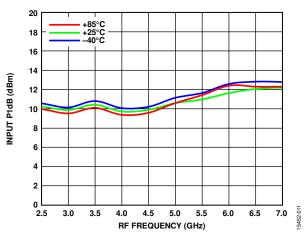


Figure 11. Input P1dB vs. RF Frequency at Various Temperatures

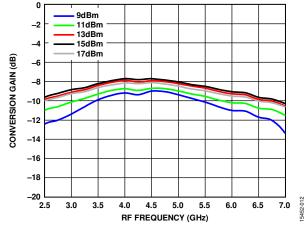


Figure 12. Conversion Gain vs. RF Frequency at Various LO Powers

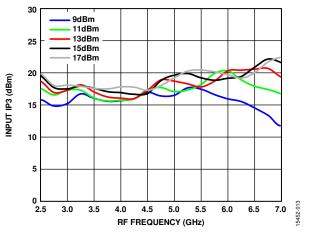


Figure 13. Input IP3 vs. RF Frequency at Various LO Powers

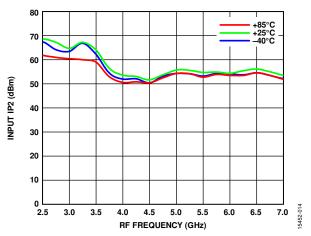


Figure 14. Input IP2 vs. RF Frequency at Various Temperatures

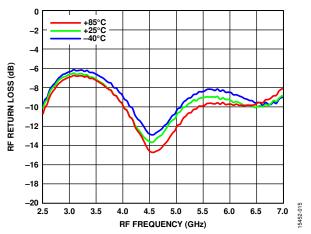


Figure 15. RF Return Loss vs. RF Frequency at Various Temperatures, LO Frequency = 4.6 GHz, LO Power = 13 dBm

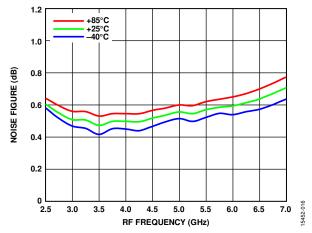


Figure 16. Noise Figure vs. RF Frequency at Various Temperatures

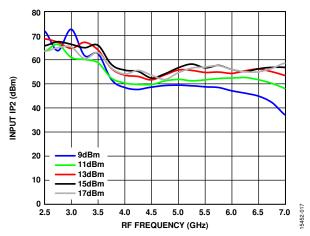


Figure 17. Input IP2 vs. RF Frequency at Various LO Powers

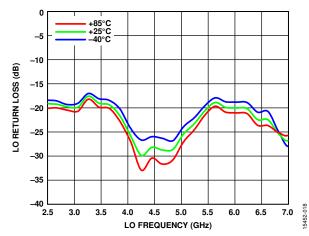


Figure 18. LO Return Loss vs. LO Frequency at Various Temperatures

Data taken as downconverter, lower sideband, $T_A = 25$ °C, IF = 1000 MHz, and LO power = 13 dBm, unless otherwise noted.

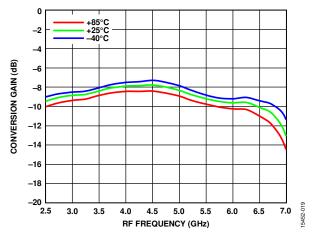


Figure 19. Conversion Gain vs. RF Frequency at Various Temperatures

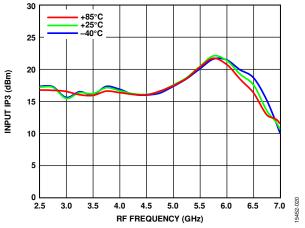


Figure 20. Input IP3 vs. RF Frequency at Various Temperatures

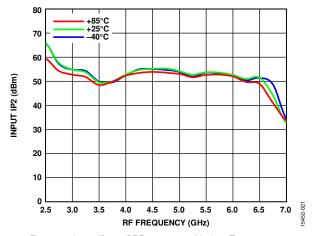


Figure 21. Input IP2 vs. RF Frequency at Various Temperatures

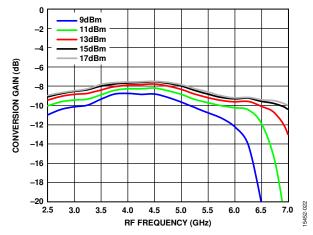


Figure 22. Conversion Gain vs. RF Frequency at Various LO Powers

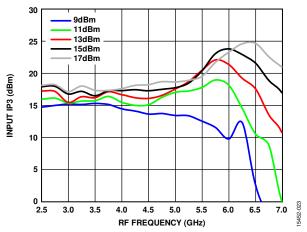


Figure 23. Input IP3 vs. RF Frequency at Various LO Powers

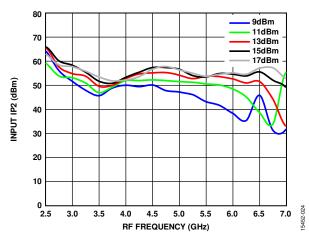


Figure 24. Input IP2 vs. RF Frequency at Various LO Powers

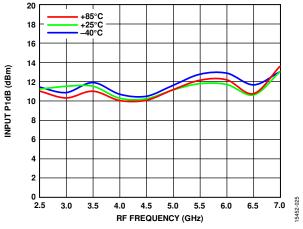


Figure 25. Input P1dB vs. RF Frequency at Various Temperatures

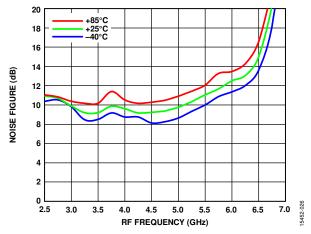


Figure 26. Noise Figure vs. RF Frequency at Various Temperatures

Data taken as downconverter, lower sideband, $T_A = 25$ °C, IF = 2000 MHz, and LO power = 13 dBm, unless otherwise noted.

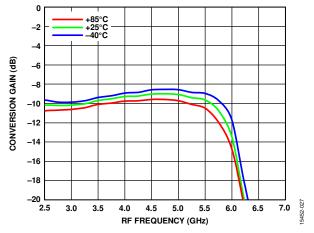


Figure 27. Conversion Gain vs. RF Frequency at Various Temperatures

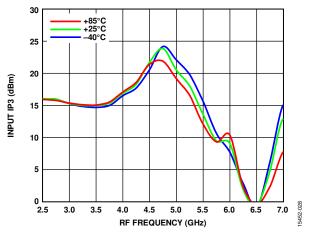


Figure 28. Input IP3 vs. RF Frequency at Various Temperatures

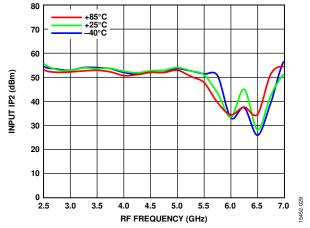


Figure 29. Input IP2 vs. RF Frequency at Various Temperatures

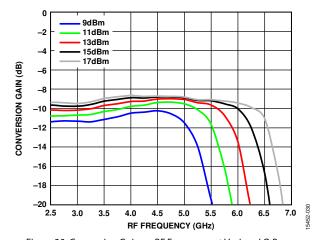


Figure 30. Conversion Gain vs. RF Frequency at Various LO Powers

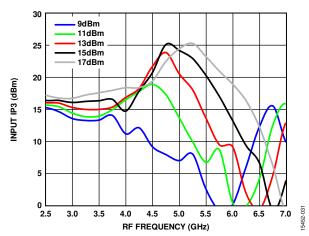


Figure 31. Input IP3 vs. RF Frequency at Various LO Powers

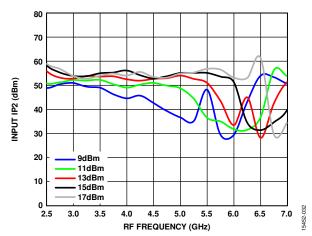


Figure 32. Input IP2 vs. RF Frequency at Various LO Powers

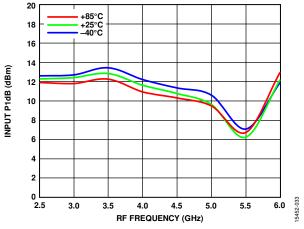


Figure 33. Input P1dB vs. RF Frequency at Various Temperatures

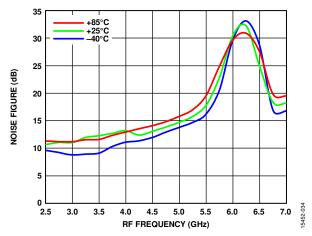


Figure 34. Noise Figure vs. RF Frequency at Various Temperatures

Data taken as downconverter, upper sideband, $T_A = 25$ °C, IF = 100 MHz, and LO power = 13 dBm, unless otherwise noted.

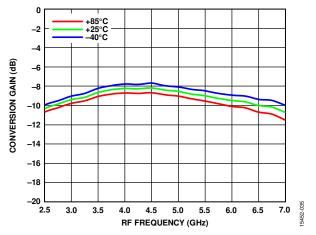


Figure 35. Conversion Gain vs. RF Frequency at Various Temperatures

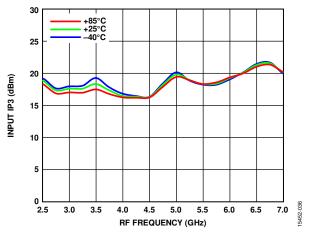


Figure 36. Input IP3 vs. RF Frequency at Various Temperatures

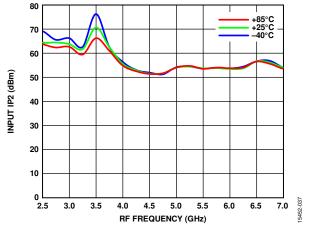


Figure 37. Input IP2 vs. RF Frequency at Various Temperatures

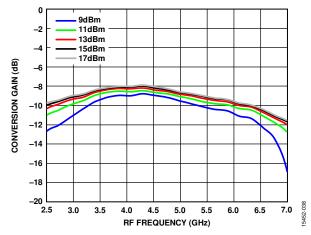


Figure 38. Conversion Gain vs. RF Frequency at Various LO Powers

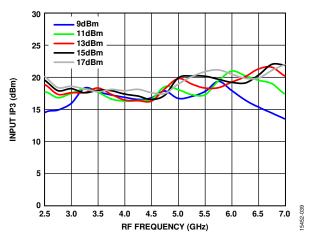


Figure 39. Input IP3 vs. RF Frequency at Various LO Powers

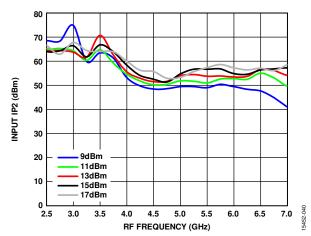


Figure 40. Input IP2 vs. RF Frequency at Various LO Powers

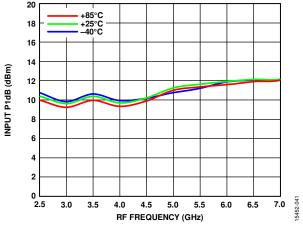


Figure 41. Input P1dB vs. RF Frequency at Various Temperatures

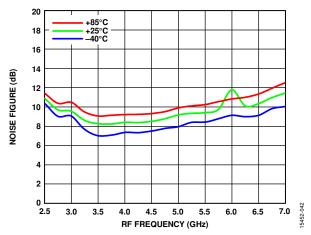


Figure 42. Noise Figure vs. RF Frequency at Various Temperatures

Data taken as downconverter, upper sideband, $T_A = 25$ °C, IF = 1000 MHz, and LO power = 13 dBm, unless otherwise noted.

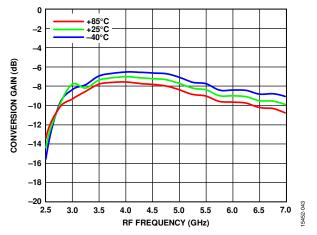


Figure 43. Conversion Gain vs. RF Frequency at Various Temperatures

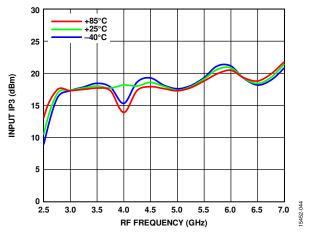


Figure 44. Input IP3 vs. RF Frequency at Various Temperatures

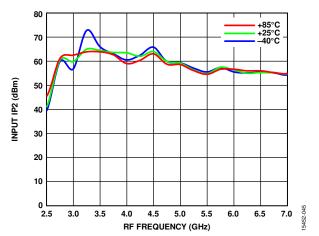


Figure 45. Input IP2 vs. RF Frequency at Various Temperatures

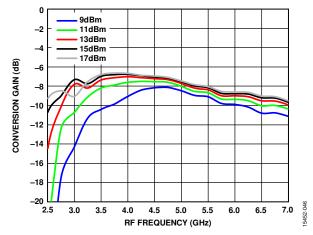


Figure 46. Conversion Gain vs. RF Frequency at Various LO Powers

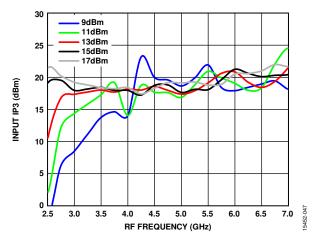


Figure 47. Input IP3 vs. RF Frequency at Various LO Powers

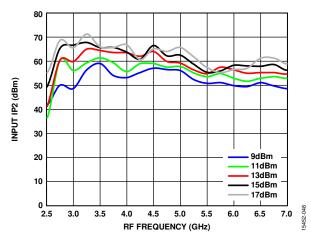


Figure 48. Input IP2 vs. RF Frequency at Various LO Powers

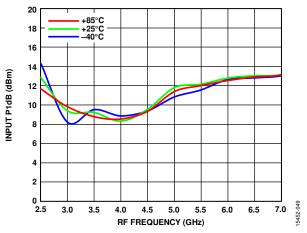


Figure 49. Input P1dB vs. RF Frequency at Various Temperatures

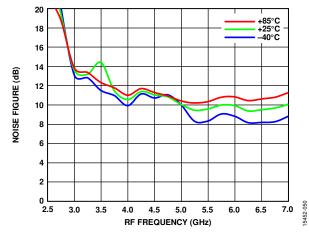


Figure 50. Noise Figure vs. RF Frequency at Various Temperatures

Data taken as downconverter, upper sideband, $T_A = 25$ °C, IF = 2000 MHz, and LO power = 13 dBm, unless otherwise noted.

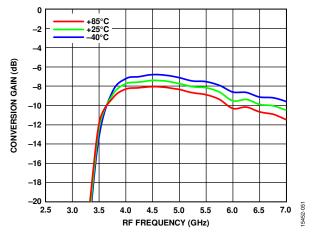


Figure 51. Conversion Gain vs. RF Frequency at Various Temperatures

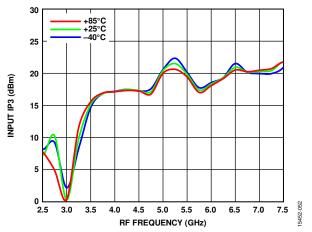


Figure 52. Input IP3 vs. RF Frequency at Various Temperatures

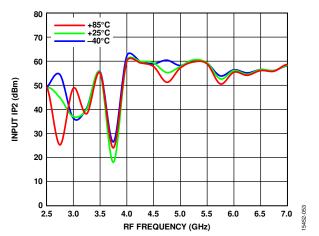


Figure 53. Input IP2 vs. RF Frequency at Various Temperatures

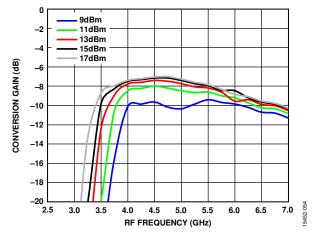


Figure 54. Conversion Gain vs. RF Frequency at Various LO Powers

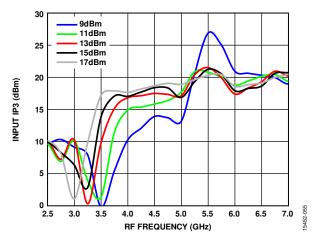


Figure 55. Input IP3 vs. RF Frequency at Various LO Powers

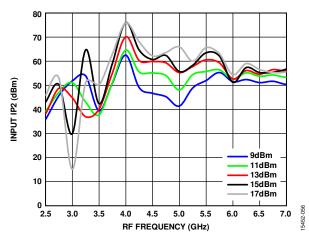


Figure 56. Input IP2 vs. RF Frequency at Various LO Powers

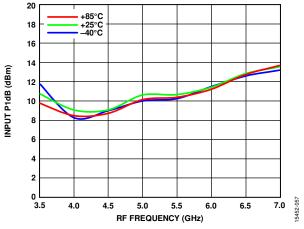


Figure 57. Input P1dB vs. RF Frequency at Various Temperatures

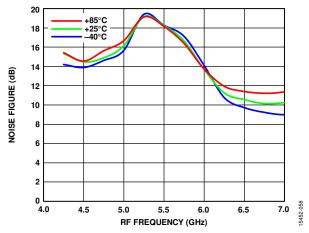


Figure 58. Noise Figure vs. RF Frequency at Various Temperatures

UPCONVERTER PERFORMANCE

Data taken as upconverter, lower sideband, $T_A = 25$ °C, IF = 100 MHz, and LO power = 13 dBm, unless otherwise noted.

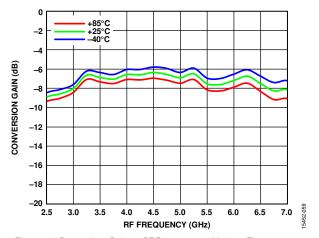


Figure 59. Conversion Gain vs. RF Frequency at Various Temperatures

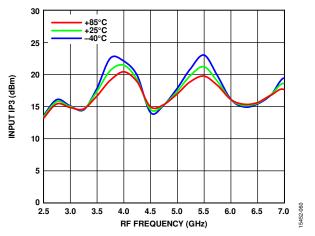


Figure 60. Input IP3 vs. RF Frequency at Various Temperatures

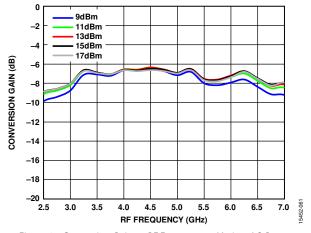


Figure 61. Conversion Gain vs. RF Frequency at Various LO Powers

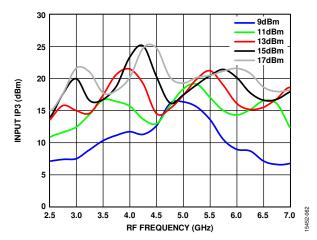


Figure 62. Input IP3 vs. RF Frequency at Various LO Powers

Data taken as upconverter, lower sideband, $T_A = 25$ °C, IF = 1000 MHz, and LO drive level = 13 dBm, unless otherwise noted.

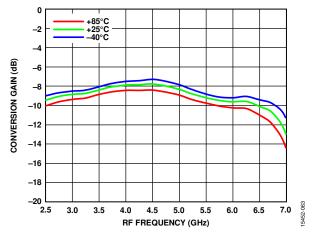


Figure 63. Conversion Gain vs. RF Frequency at Various Temperatures

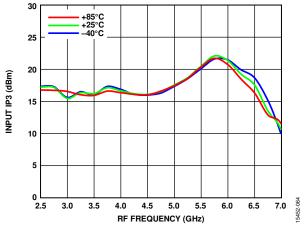


Figure 64. Input IP3 vs. RF Frequency at Various Temperatures

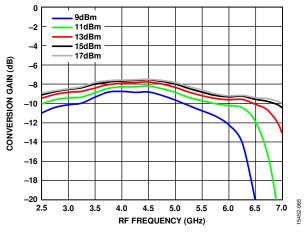


Figure 65. Conversion Gain vs. RF Frequency at Various LO Powers

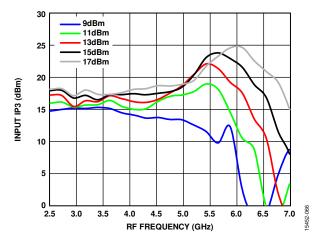


Figure 66. Input IP3 vs. RF Frequency at Various LO Powers

Data taken as upconverter, lower sideband, $T_A = 25$ °C, IF = 2000 MHz, and LO drive level = 13 dBm, unless otherwise noted.

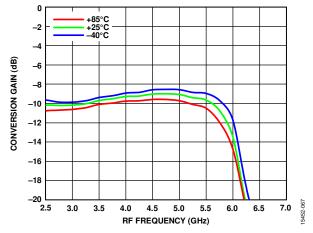


Figure 67. Conversion Gain vs. RF Frequency at Various Temperatures

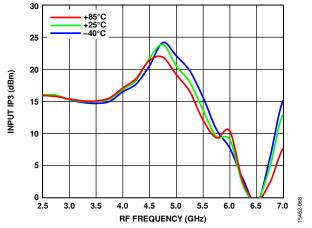


Figure 68. Input IP3 vs. RF Frequency at Various Temperatures

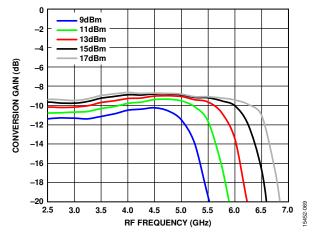


Figure 69. Conversion Gain vs. RF Frequency at Various LO Powers

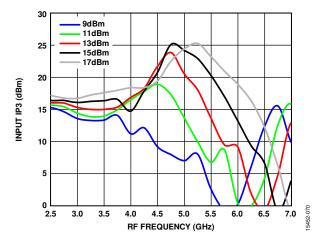


Figure 70. Input IP3 vs. RF Frequency at Various LO Powers

Data taken as upconverter, upper sideband, $T_A = 25$ °C, IF = 100 MHz, and LO drive level = 13 dBm, unless otherwise noted.

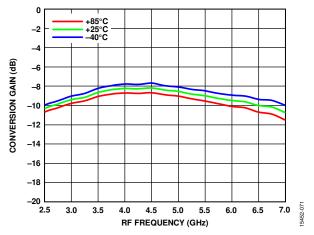


Figure 71. Conversion Gain vs. RF Frequency at Various Temperatures

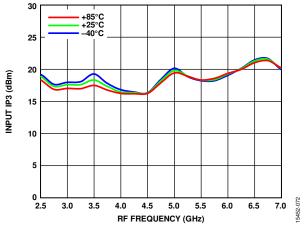


Figure 72. Input IP3 vs. RF Frequency at Various Temperatures

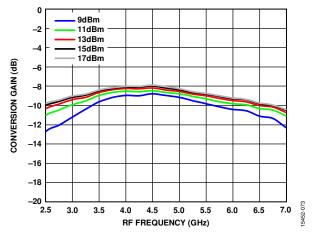


Figure 73. Conversion Gain vs. RF Frequency at Various LO Powers

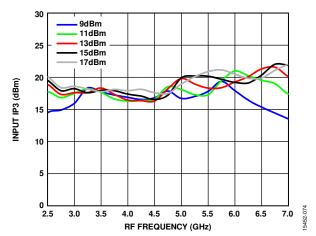


Figure 74. Input IP3 vs. RF Frequency at Various LO Powers

 $Data\ taken\ as\ upconverter,\ upper\ sideband,\ T_{A}=25^{\circ}C,\ IF=1000\ MHz,\ and\ LO\ drive\ level=13\ dBm,\ unless\ otherwise\ noted.$

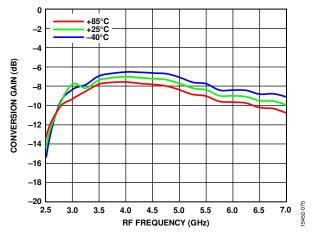


Figure 75. Conversion Gain vs. RF Frequency at Various Temperatures

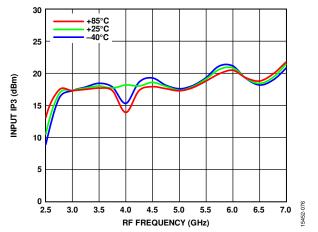


Figure 76. Input IP3 vs. RF Frequency at Various Temperatures

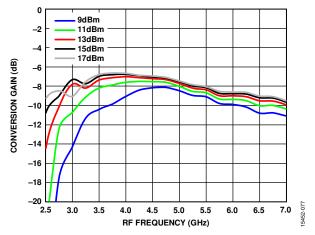


Figure 77. Conversion Gain vs. RF Frequency at Various LO Powers

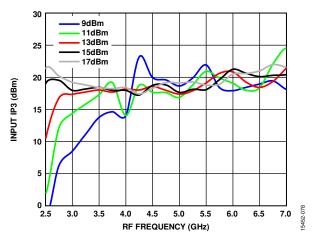


Figure 78. Input IP3 vs. RF Frequency at Various LO Powers

Data taken as upconverter, upper sideband, T_A = 25°C, IF = 2000 MHz, and LO drive level = 13 dBm, unless otherwise noted.

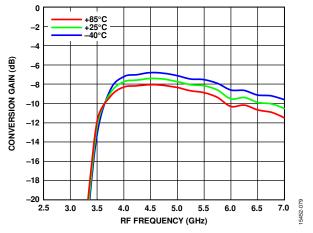


Figure 79. Conversion Gain vs. RF Frequency at Various Temperatures

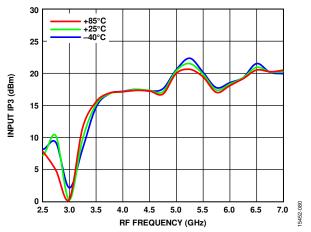


Figure 80. Input IP3 vs. RF Frequency at Various Temperatures

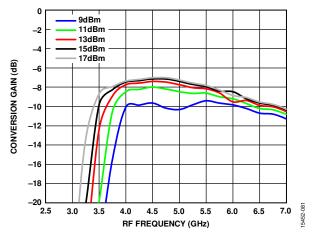


Figure 81. Conversion Gain vs. RF Frequency at Various LO Powers

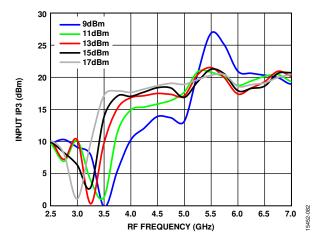


Figure 82. Input IP3 vs. RF Frequency at Various LO Powers

SPURIOUS AND HARMONICS PERFORMANCE

Mixer spurious products are measured in dBc from the IF output power level, unless otherwise noted. Spur values are $(M \times RF) - (N \times LO)$.

$M \times N$ Spurious Outputs, IF = 100 MHz

RF = +2.5 GHz, LO = +2.6 GHz, RF power = -10 dBm, and LO power = +13 dBm.

	N×LO								
		0	1	2	3	4	5		
	0		27.6	27	55.2	39.4	6.7		
	1	N/A ¹	19.5	35.3	43.8	62.1	78.6		
M×RF	2	62.4	72.6	85.8	81.7	76.6	80.5		
M × KF	3	72.2	67.3	67	73.3	81.3	82.7		
	4	82.2	85.1	84.6	89.9	85.4	82.8		
	5	82	80.7	84.4	86.8	90	0.6		

¹ N/A means not applicable.

RF = +4.5 GHz, LO = +4.6 GHz, RF power = -10 dBm, and LO power = +13 dBm.

		N×LO						
		0	1	2	3	4	5	
	0		39.2	30.8	35.2	32.9	15	
	1	N/A ¹	34.4	45.6	70.8	56.8	85.3	
M×RF	2	54.7	57.4	57.1	83.3	76.2	80.1	
IVI X NF	3	83	74	71.4	88	86.1	80.1	
	4	80.8	84.1	87.3	87.5	88.6	79.9	
	5	79.2	79.5	83.6	86.1	89.4	2.7	

¹ N/A means not applicable.

RF = +6 GHz, LO = +6.1 GHz, RF power = -10 dBm, and LO power = +13 dBm.

			N × LO¹									
		0	1	2	3	4	5					
M×RF	0		38.6	27.5	28.7	N/A	16.5					
	1	N/A	37.6	51.4	44.7	42.3	79.1					
	2	72.4	62.3	84.8	82.5	78.7	81.3					
	3	83.5	82	78	86.6	82.4	75.7					
	4	78.9	83.1	86.9	88.6	85.2	N/A					
	5	76.3	79.2	84.3	85.9	88.6	6.8					

¹ N/A means not applicable.

$M \times N$ Spurious Outputs, IF = 1000 MHz

RF = +2.5 GHz, LO = +3.5 GHz, RF power = -10 dBm, and LO power = +13 dBm.

		N×LO								
		0	1	2	3	4	5			
	0		+27.6	-2.2	+21.8	+16.5	+50.7			
	1	+36.1	+6.7	N/A ¹	+29.4	+37.5	+56			
M×RF	2	+61	+75.3	+54.8	+62.3	+75.5	+80			
WIX KF	3	+75.1	+76.8	+61.4	+68.8	+59.5	+81.5			
	4	+81	+82.2	+82.8	+59.5	+68.5	+61.8			
	5	+78.1	+79.6	+82.5	+73.8	+62.7	+54.7			

¹ N/A means not applicable.

RF = +4.5 GHz, LO = +5.5 GHz, RF power = -10 dBm, and LO power = +13 dBm.

			N×LO ¹								
		0	1	2	3	4	5				
	0		39.2	5.8	43.9	27.3	28.9				
	1	N/A	13.2	N/A	36.4	50.5	45.1				
M v DE	2	44.5	85.2	56.8	63.8	73.6	81.6				
M×RF	3	78.6	80.5	82.5	75.7	70.6	83.7				
	4	81.7	80.5	83	83.7	88.7	86.3				
	5	83.7	76.8	79.4	84.8	87.1	90.1				

¹ N/A means not applicable.

RF = +6 GHz, LO = +7 GHz, RF power = -10 dBm, and LO power = +13 dBm.

				N × LO ¹					
		0	1	2	3	4	5		
	0		38.6	6.3	36.1	21.9	N/A		
	1	N/A	15.5	N/A	36.7	60.3	28.7		
M×RF	2	N/A	79.9	67.5	58.9	70.2	78.4		
IVI X RF	3	64.4	78.8	82.3	73.1	66	82.3		
	4	77.8	70.2	79	82.7	65.4	72.8		
	5	80.3	N/A	66.5	78.6	70	59		

¹ N/A means not applicable.