

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

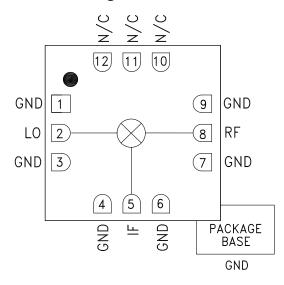
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


GaAs MMIC FUNDAMENTAL MIXER, 14 - 26 GHz

Typical Applications

The HMC260LC3B is ideal for:

- Point-to-Point Radios
- Point-to-Multi-Point Radios & VSAT
- Test Equipment & Sensors
- · Military End-Use

Functional Diagram

Features

Passive: No DC Bias Required

Input IP3: +20 dBm LO/RF Isolation: 40 dB

Wide IF Bandwidth: DC - 8 GHz

12 Lead Ceramic 3x3 mm SMT Package: 9mm²

General Description

The HMC260LC3B is a general purpose double balanced mixer in a leadless RoHS compliant SMT package that can be used as an upconverter or downconverter between 14 and 26 GHz. This mixer requires no external components or matching circuitry. The HMC260LC3B provides excellent LO to RF and LO to IF suppression due to optimized balun structures. The mixer operates with LO drive levels above +9 dBm. The HMC260LC3B eliminates the need for wire bonding, allowing use of surface mount manufacturing techniques.

Electrical Specifications, $T_A = +25^{\circ}$ C, IF= 1 GHz, LO= +13 dBm*

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range, RF & LO	14 - 18		18 - 26			GHz	
Frequency Range, IF	DC - 8		DC - 8			GHz	
Conversion Loss		7.5	10.5		9	12	dB
Noise Figure (SSB)		7.5	10.5		9	12	dB
LO to RF Isolation	34	40		30	35		dB
LO to IF Isolation	24	30		24	35		dB
RF to IF Isolation	15	25		25	30		dB
IP3 (Input)		18			20		dBm
IP2 (Input)		50			50		dBm
1 dB Gain Compression (Input)		12			14		dBm

 $^{^*}$ Unless otherwise noted, all measurements performed as downconverter, IF= 1 GHz.

HMC260* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS -

View a parametric search of comparable parts.

EVALUATION KITS

• HMC260LC3B Evaluation Board

DOCUMENTATION

Application Notes

· Mixer Application Note

Data Sheet

- · HMC260 Die Data Sheet
- HMC260LC3B Data Sheet

TOOLS AND SIMULATIONS \Box

- HMC260 Die S-Parameters
- HMC260LC3B S-Parameters

REFERENCE MATERIALS 🖵

Quality Documentation

- Package/Assembly Qualification Test Report: LC3, LC3B, LC3C (QTR: 2014-00376 REV: 01)
- Semiconductor Qualification Test Report: MESFET-B (QTR: 2013-00245)

DESIGN RESOURCES 🖵

- HMC260 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC260 EngineerZone Discussions.

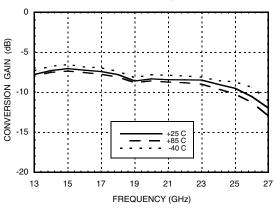
SAMPLE AND BUY 🖵

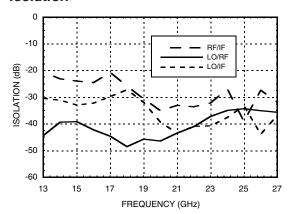
Visit the product page to see pricing options.

TECHNICAL SUPPORT

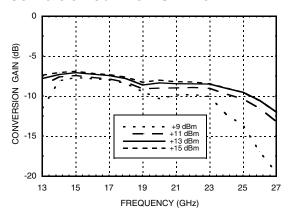
Submit a technical question or find your regional support number.

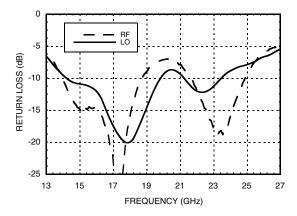
DOCUMENT FEEDBACK 🖳

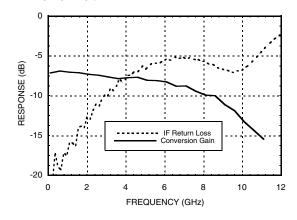

Submit feedback for this data sheet.

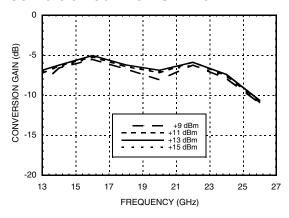


GaAs MMIC FUNDAMENTAL MIXER, 14 - 26 GHz


Conversion Gain vs. Temperature

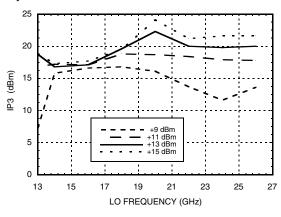

Isolation

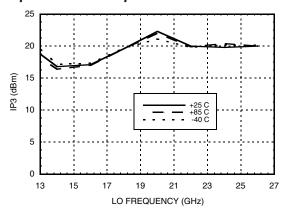

Conversion Gain vs. LO Drive


Return Loss

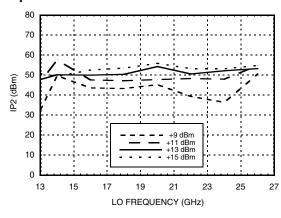
IF Bandwidth

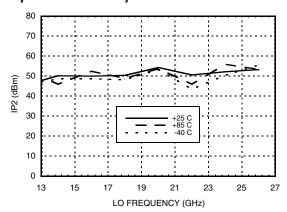
Upconverter Performance Conversion Gain vs. LO Drive

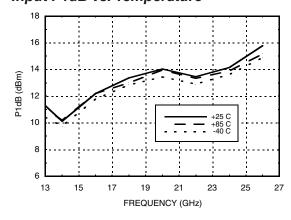




GaAs MMIC FUNDAMENTAL MIXER, 14 - 26 GHz


Input IP3 vs. LO Drive *


Input IP3 vs. Temperature *


Input IP2 vs. LO Drive *

Input IP2 vs. Temperature *

Input P1dB vs. Temperature

MxN Spurious Outputs

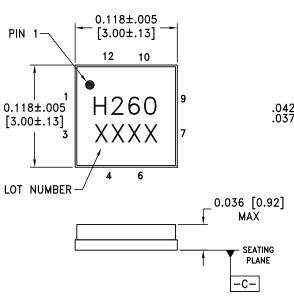
	nLO				
mRF	0	1	2	3	4
0	xx	-2	17	xx	xx
1	18	0	38	50	78
2	82	74	71	65	84
3	xx	90	95	77	90
4	xx	xx	93	98	104

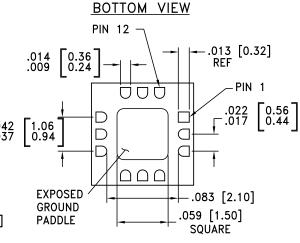
RF = 18 GHz @ -10 dBm

LO = 17 GHz @ +13 dBm

All values in dBc below the IF output power level.

^{*} Two-tone input power = -10 dBm each tone, 1 MHz spacing.


GaAs MMIC FUNDAMENTAL MIXER, 14 - 26 GHz


Absolute Maximum Ratings

RF / IF Input	+15 dBm
LO Drive	+27 dBm
Channel Temperature	150 °C
Continuous Pdiss (Ta = 85 °C) (derate 3.95 mW/°C above 85 °C)	260 mW
Thermal Resistance (junction to ground paddle)	253 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A

Outline Drawing

NOTES:

- 1. PACKAGE BODY MATERIAL: ALUMINA.
- 2. LEAD AND GROUND PADDLE PLATING: GOLD FLASH OVER NICKEL.
- 3. DIMENSIONS ARE IN INCHES (MILLIMETERS).
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 5. CHARACTERS TO BE HELVETICA MEDIUM, .025 HIGH, BLACK INK, OR LASER MARK LOCATED APPROX. AS SHOWN.
- 6. PACKAGE WARP SHALL NOT EXCEED 0.05MM DATUM C -
- 7. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Package Information

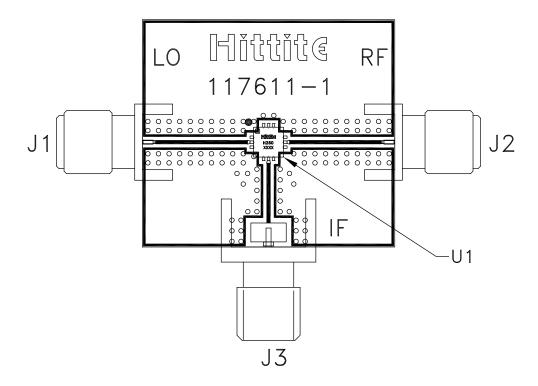
Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC260LC3B	Alumina, White	Gold over Nickel	MSL3 ^[1]	H260 XXXX

^[1] Max peak reflow temperature of 260 $^{\circ}\text{C}$

^{[2] 4-}Digit lot number XXXX

GaAs MMIC FUNDAMENTAL MIXER, 14 - 26 GHz

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1, 3, 4, 6, 7, 9	GND	Package bottom must also be connected to RF/DC ground.	GND =
2	LO	This pin is DC coupled and matched to 50 Ohm.	100
5	IF	This pin is DC coupled. For applications not requiring operation to DC, this port should be DC blocked externally using a series capacitor whose value has been chosen to pass the necessary IF frequency range. For operation to DC, this pin must not source or sink more than 2 mA of current or part non-function and possible part failure will result.	IFO
8	RF	This pin is DC coupled and matched to 50 Ohm.	RF O
10, 11, 12	N/C	No connection required. These pins may be connected to RF/DC ground without affecting performance.	

GaAs MMIC FUNDAMENTAL MIXER, 14 - 26 GHz

Evaluation PCB

List of Materials for Evaluation PCB 109952 [1]

Item	Description
J1, J2	SRI SMA Connector
J3	Johnson SMA Connector
U1	HMC260LC3B Mixer
PCB [2]	117611 Evaluation PCB

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Arlon 25 RF