

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HMC271ALP4 / 271ALP4E

v02.0311

1 dB LSB GaAs MMIC 5-BIT SERIAL CONTROL DIGITAL ATTENUATOR, 0.7 - 3.7 GHz

Typical Applications

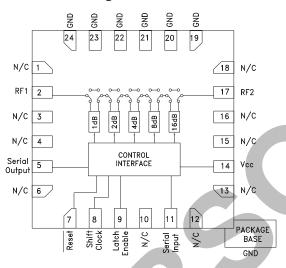
The HMC271ALP4(E) is ideal for:

- Cellular/3G Infrastructure
- Fixed Wireless, WiMax & WiBro
- Test Instrumentation

Features

1 dB LSB Steps to 31 dB

CMOS Compatible Serial Data Interface


SPI Compatible Serial Output

±0.4 dB Typical Bit Error

24 Lead 4x4mm QFN Package: 16mm²

Included in the HMC-DK004 Designer's Kit

Functional Diagram

General Description

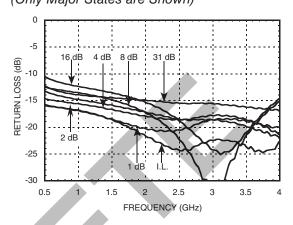
The HMC271ALP4(E) is a broadband 5-bit positive control GaAs IC digital attenuator with CMOS compatible serial-to-parallel drivers in a low cost leadless QFN 4x4 mm SMT package. Covering 0.7 to 3.7 GHz, the insertion loss is typically less than 2.5 dB. The attenuator bit values are 1 (LSB), 2, 4, 8, and 16 dB for a total attenuation of 31 dB. Accuracy is excellent at \pm 0.4 dB typical with an IIP3 of up to \pm 48 dBm. Five bit CMOS compatible serial control words are used to select each attenuation state. A single Vcc bias of \pm 3V to \pm 5V applied through an external 5 kOhm resistor is required.

Electrical Specifications, $T_A = +25^{\circ}$ C, Vcc = +3V to +5V

Parameter		Frequency	Min.	Typical	Max.	Units
Insertion Loss		0.7 - 1.4 GHz 1.4 - 2.3 GHz 2.3 - 2.7 GHz 2.7 - 3.7 GHz		1.9 2.3 2.6 2.8	2.4 2.8 3.1 3.3	dB dB dB dB
Attenuation Range		0.7 - 3.7 GHz		31		dB
Return Loss (RF1 & RF2, All Atten. States)		0.7 - 1.4 GHz 1.4 - 2.7 GHz 2.7 - 3.7 GHz		12 15 16		dB dB dB
Attenuation Accuracy: (Referenced to Insertion Loss) All Attenuation States		0.7 - 0.9 GHz 0.9 - 2.2 GHz 2.2 - 3.7 GHz	\pm (0.4 + 5% of Atten. Setting) Max \pm (0.4 + 4% of Atten. Setting) Max \pm (0.4 + 6% of Atten. Setting) Max		tting) Max	dB dB dB
Input Power for 0.1 dB Compression	Vcc = 5V Vcc = 3V	0.7 - 3.7 GHz		24 22		dBm dBm
$ \begin{array}{ll} \mbox{Input Third Order Intercept Point} & \mbox{Vcc} = 5 \mbox{V} \\ \mbox{(Two-tone Input Power} = 0 \mbox{ dBm Each Tone)} & \mbox{Vcc} = 3 \mbox{V} \\ \end{array} $		0.7 - 3.7 GHz		48 46		dBm dBm
Switching Characteristics						
tRISE, tFALL (10/90% RF) tON, tOFF (Latch Enable to 10/90% RF)		0.7 - 3.7 GHz		750 830		ns ns

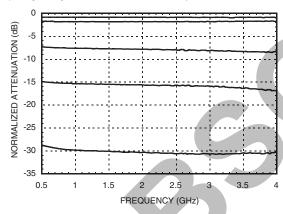
HMC271ALP4 / 271ALP4E

v02.0311

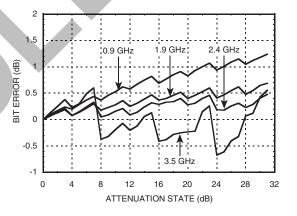


1 dB LSB GaAs MMIC 5-BIT SERIAL CONTROL DIGITAL ATTENUATOR, 0.7 - 3.7 GHz

Insertion Loss

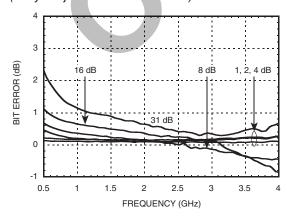


Return Loss RF1, RF2 (Only Major States are Shown)

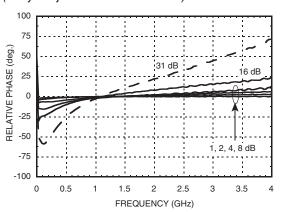


Normalized Attenuation

(Only Major States are Shown)



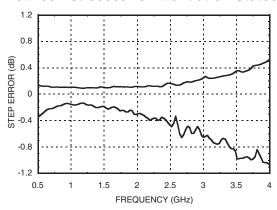
Bit Error vs. Attenuation State


Bit Error vs. Frequency

(Only Major States are Shown)

Relative Phase vs. Frequency

(Only Major States are Shown)


Note: All Data Typical Over Voltage (+3V to +5V) & Temperature (-40°C to +85°C).

1 dB LSB GaAs MMIC 5-BIT SERIAL CONTROL DIGITAL ATTENUATOR, 0.7 - 3.7 GHz

Worst Case Step Error Between Successive Attenuation States

Digital Control Voltages

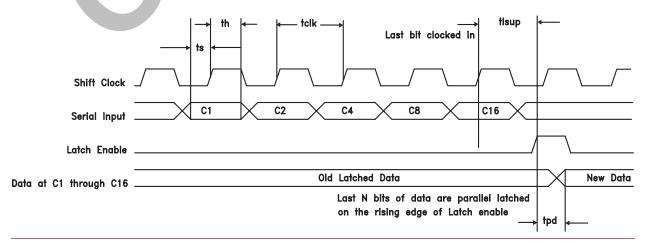
State	Vcc = +5V	Vcc = +3V
Low	0 to 1.3V	0 to 0.7V
High	3.5 to 5V	2.3 to 3V

Serial Input Truth Table

Latch Enable	Shift Clock	Reset	Function
Х	Х	L	Shift register cleared
Х	1	Н	Shift register clocked
↑	х	Н	Contents of shift register transferred to Digital Attenuator

Timing

Parameter	Symbol	Vcc =	Vcc = +5V		Vcc = +3V	
- arameter		Min.	Max.	Min.	Max.	
Serial Input Setup Time	ts	20	-	100		ns
Hold time from Serial Input to Shift Clock	th	0	-	5	-	ns
Setup time from Shift Clock to Latch Enable	tlsup	40	-	100		ns
Propagation delay, Latch Enable to C1 through C16	tpd		30		70	ns
Setup time from Reset to Shift Clock	-	20		50	-	ns
Clock Frequency (1/tclk)	fclk	-	30	-	10	MHz

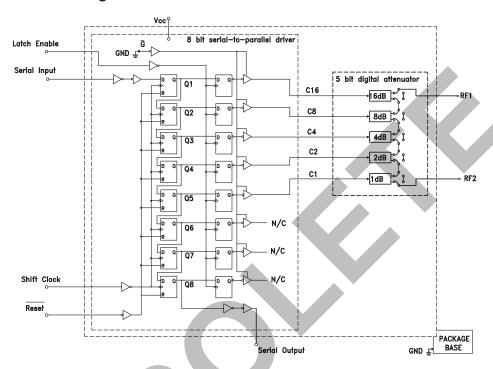

Truth Table

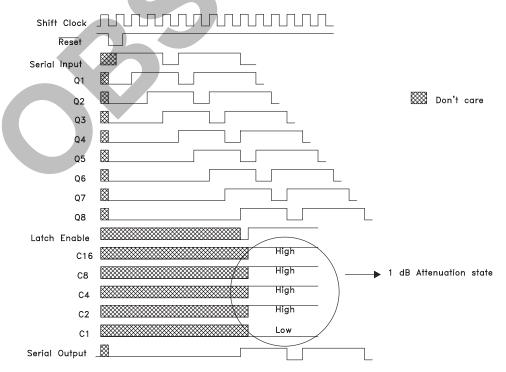
		Se	Attenuation			
	C1	C2	C4	C8	C16	Setting RF1 - RF2
	High	High	High	High	High	Reference I.L.
N	Low	High	High	High	High	1 dB
	High	Low	High	High	High	2 dB
	High	High	Low	High	High	4 dB
	High	High	High	Low	High	8 dB
	High	High	High	High	Low	16 dB
	Low	Low	Low	Low	Low	31 dB Max. Atten.

Any combination of the above states will provide an attenuation approximately equal to the sum of the bits selected.

Timing Diagram

Serial data is shifted in on the rising edge of the Shift Clock, LSB first, and is latched on the rising edge of Latch Enable.


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


1 dB LSB GaAs MMIC 5-BIT SERIAL CONTROL DIGITAL ATTENUATOR, 0.7 - 3.7 GHz

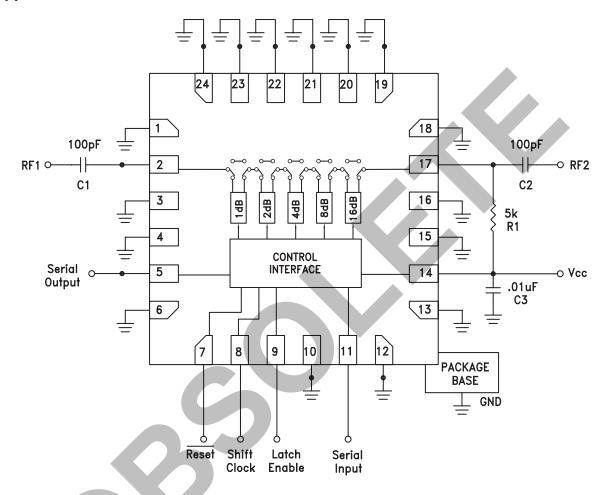
Logic / Functional Diagram

Programming Example to Select 1 dB Attenuation State

v02.0311

1 dB LSB GaAs MMIC 5-BIT SERIAL CONTROL DIGITAL ATTENUATOR, 0.7 - 3.7 GHz

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1, 3, 4, 6, 10, 12, 13, 15, 16, 18	N/C	These pins are not connected internally. However, all data shown herein was measured with these pins connected to RF/DC Ground.	
2, 17	RF1, RF2	This pin is DC coupled and matched to 50 Ohms Blocking capacitors are required. Select value based on lowest frequency of operation.	RF1, O RF2
5	Serial Output	Serial data output. Serial input data delayed by 8 clock cycles.	Vec Serial Output
7	Reset		20Kn Vcc O
8	Shift Clock	See truth table, control voltage table and timing diagram.	Ver o
9	Latch Enable		Shiff Clock 300n Latch Enable Co-WW
11	Serial Input		20Kn }
14	Vcc	Supply Voltage.	
19 - 24	GND	Package bottom has an exposed metal paddle that must also be connected to RF/DC Ground.	GND =

1 dB LSB GaAs MMIC 5-BIT SERIAL CONTROL DIGITAL ATTENUATOR, 0.7 - 3.7 GHz

Application Circuit

DC blocking capacitors C1 & C2 are required on RF1 & RF2. Choose C1 = $C2 = 100 \sim 300 \text{ pF}$ to allow lowest customer specific frequency to pass with minimal loss. R1 = 5 kOhm is required to supply voltage to the circuit through either PIN 2 or PIN 17.

1 dB LSB GaAs MMIC 5-BIT SERIAL **CONTROL DIGITAL ATTENUATOR, 0.7 - 3.7 GHz**

Absolute Maximum Ratings

Digital Inputs (Reset, Shift Clock, Latch Enable & Serial Input)	-0.5 to (Vcc + 0.5) V	
Digital Outputs (Serial Output)	-0.5 to (Vcc + 0.5) V	
DC Current on Serial Output	±35 mA	
Bias Voltage (Vcc)	+5.6 V	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	
RF Input Power (0.7 - 3.7 GHz)	+26 dBm	
ESD Sensitivity (HBM)	Class 1A	

v02.0311

Outline Drawing

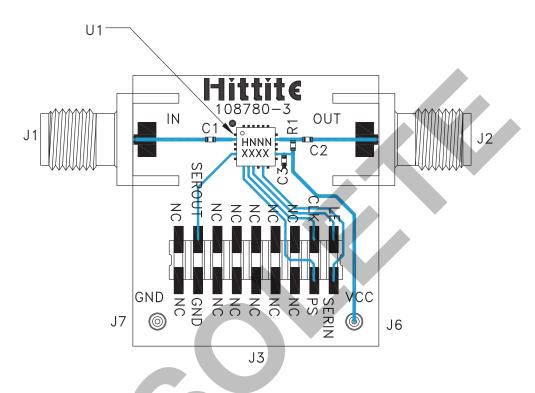
PIN 24 .012 \[0.30 \] .007 \[0.18 \] 0.020 0.50 0.012 0.30 PIN 1 18 HNNNN XXXX 12 LOT NUMBER 2.95 2.65 EXPOSED GROUND PADDLE MUST BE CONNECTED TO **SQUARE** RF/DC GROUND NOTES: SEATING 1. LEADFRAME MATERIAL: COPPER ALLOY PLANE .003[0.08] C -c-

BOTTOM VIEW

- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC271ALP4	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H271A XXXX
HMC271ALP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	H271A XXXX


- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

1 dB LSB GaAs MMIC 5-BIT SERIAL CONTROL DIGITAL ATTENUATOR, 0.7 - 3.7 GHz

Evaluation Circuit Board

List of Materials for Evaluation PCB 108782 [1]

Item		Description		
J1 - J2		PCB Mount SMA Connector		
J3		18 Pin DC Connector		
J6, J7		DC Pin		
C1, C2		100 pF Capacitor, 0402 Pkg.		
C3 0.01 µF Capacitor, 0402 Pkg.		0.01 μF Capacitor, 0402 Pkg.		
R1 5 kOhm Resistor, 0402 Pkg.		5 kOhm Resistor, 0402 Pkg.		
U1		HMC271ALP4(E) Digital Attenuator		
PCB [2]		108780 Evaluation PCB		

^[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed ground paddle should be connected directly to the ground plane similar to that shown below. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board as shown is available from Hittite Microwave Corporation upon request.