

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

4 dB LSB SILICON 2-BIT POSITIVE CONTROL DIGITAL ATTENUATOR, 0.7 - 4.0 GHz

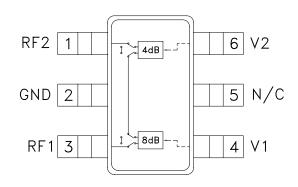
Typical Applications

The HMC291SE is ideal for:

- Cellular
- PCS, ISM, MMDS
- WLL Handset & Base Station

Features

RoHS Compliant Product


4 dB LSB Steps to 12 dB

Single Positive Control Per Bit, 0/+3V or +5V

Typical Step Error: ±0.3 dB

Miniature SOT 26 Package: 9 mm²

Functional Diagram

General Description

The HMC291SE is a general purpose broadband 2-bit positive control silicon IC digital attenuator in 6 lead SOT26 surface mount plastic package. The insertion loss is typically in between 0.4 dB - 1 dB through operating frequency range. The attenuator bit values are 4 (LSB) and 8 dB for a total attenuation of 12 dB. State error is excellent at ± 0.4 dB typical with an IIP3 of up to 57 dBm. Two bit control voltage inputs, toggled between 0V and +3V or +5V, are used to select each attenuation state at less than 25 µA each. A single VDD supply voltage of +3V to +5V applied through an external 4.7K Ohm resistor is required.

Electrical Specifications,

 $T_A = +25^{\circ}C$, VDD = +3V to +5V & VCTL = 0/VDD (Unless Otherwise Stated)

Parameter		Frequency	Min.	Typical	Max.	Units
Insertion Loss		0.7 - 1.4 GHz 1.4 - 2.3 GHz 2.3 - 2.7 GHz 2.7 - 4.0 GHz		0.5 0.5 0.6 0.8	0.65 0.65 0.7 1.32	dB dB dB dB
Attenuation Range		0.7 - 4.0 GHz		12		dB
Return Loss (RF1 & RF2, All Atten. States)		0.7 - 1.4 GHz 1.4 - 4.0 GHz	20 17	25 27		dB dB
State Error All Attenuation States All Attenuation States All Attenuation States All Attenuation States		0.7 - 1.4 GHz 1.4 - 2.3 GHz 2.3 - 2.7 GHz 2.7 - 4.0 GHz	± (0.1 + 4% of Atten. Setting Max) ± (0.2 + 2% of Atten. Setting Max) ± (0.4 + 3% of Atten. Setting Max) ± (0.4 + 4% of Atten. Setting Max)			dB dB dB dB
Input Power for 0.1 dB Compression (Input P0.1dB)	5V ^[1] 3V	0.7 - 4.0 GHz		28 27		dBm dBm
Input Third Order Intercept Point (IIP3) (Two-tone Input Power = 15 dBm Each Tone)	5V 3V	0.7 - 4.0 GHz	52 52	57 54	59 56	dBm dBm
Switching Characteristics t _{RISE} , t _{FALL} (10/90% RF) t _{ON} , t _{OFF} (50% CTL to 10/90% RF)		0.7 - 4.0 GHz		250 300		ns ns

[1] Compression point is above maximum input power

HMC291S* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖵

View a parametric search of comparable parts.

EVALUATION KITS

• HMC291S Evaluation Board

DOCUMENTATION

Data Sheet

 HMC291SE: 4 dB LSB Slilcon 2-Bit Positive Control Digital Attenuator, 0.7 - 4.0 GHz Preliminary Data Sheet

DESIGN RESOURCES 🖳

- HMC291S Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- · Symbols and Footprints

DISCUSSIONS

View all HMC291S EngineerZone Discussions.

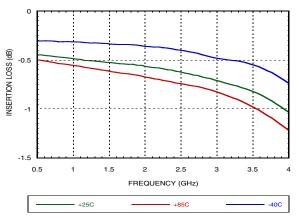
SAMPLE AND BUY 🖵

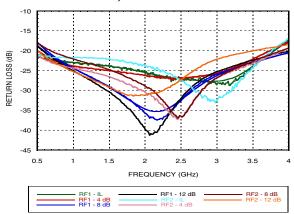
Visit the product page to see pricing options.

TECHNICAL SUPPORT 🖳

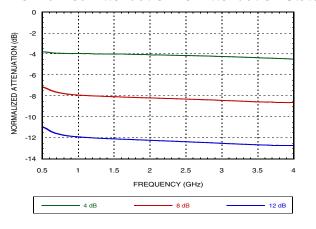
Submit a technical question or find your regional support number.

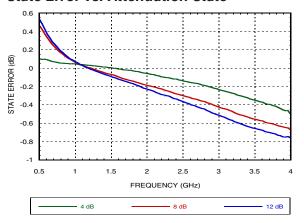
DOCUMENT FEEDBACK 🖳

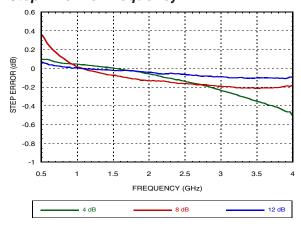

Submit feedback for this data sheet.

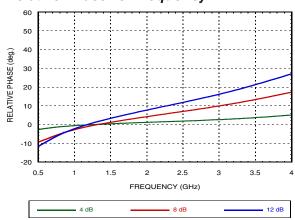

/05.1216

4 dB LSB SILICON 2-BIT POSITIVE CONTROL DIGITAL ATTENUATOR, 0.7 - 4.0 GHz


Insertion Loss

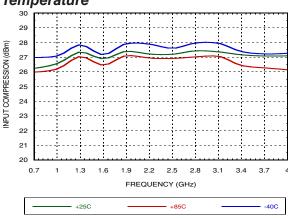

Return Loss RF1, RF2

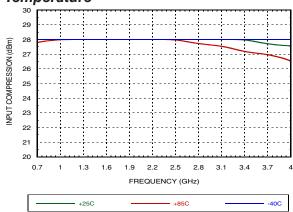

Normalized Attenuation vs. Attenuation State


State Error vs. Attenuation State

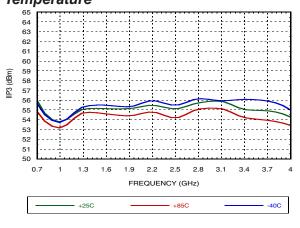
Step Error vs. Frequency

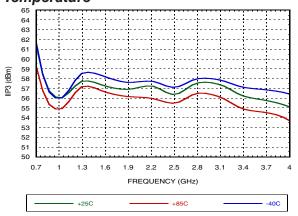
Relative Phase vs. Frequency




v05.1216

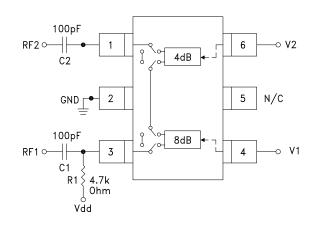
4 dB LSB SILICON 2-BIT POSITIVE CONTROL DIGITAL ATTENUATOR, 0.7 - 4.0 GHz


Input P0.1dB vs. Frequency at 3V over Temperature

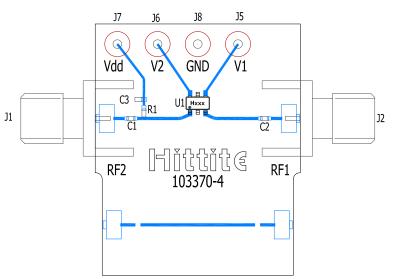

Input P0.1dB vs. Frequency at 5V over Temperature^[1]

IIP3 vs. Frequency at 3V over Temperature

IIP3 vs. Frequency at 5V over Temperature



v05.1216


4 dB LSB SILICON 2-BIT POSITIVE CONTROL DIGITAL ATTENUATOR, 0.7 - 4.0 GHz

Application Circuit

DC blocking capacitors C1 and C2 are required on RF1 and RF2. Choose C1 = C2 = $100 \sim 300$ pF to allow lowest frequency of operation to pass with minimal loss. R1 = 4.7K Ohm is required to supply voltage to the circuit through either PIN 3 or PIN 1.

Evaluation Circuit Board

List of Materials for Evaluation PCB EV1HMC291SE [1]

Item	Description		
J1 - J2	PCB Mount SMA Connector		
J5 - J8	DC Pin		
R1	4.7 kOhm Resistor, 0402 Pkg.		
C1, C2	0402 Pkg. Capacitor, Select for Lowest Frequency of Operation		
C3	1 nF capacitor, 0402 Pkg.		
U1	HMC291SE Digital Attenuator		
PCB [2]	103370 Evaluation PCB 1.5" x 1.5"		

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board as shown is available from Analog Devices upon request.

^[2] Circuit Board Material: Rogers 4350

05.1216

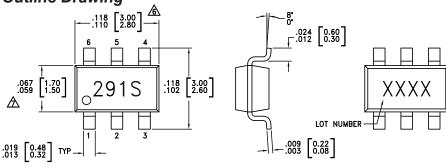
4 dB LSB SILICON 2-BIT POSITIVE CONTROL DIGITAL ATTENUATOR, 0.7 - 4.0 GHz

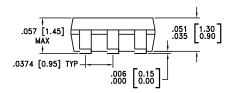
Truth Table

ge Input (VCTL)	Attenuation	
V2 4 dB	Setting RF1 - RF2	
High	Reference I.L.	
Low	4 dB	
High	8 dB	
Low	12 dB Max. Atten.	
	4 dB High Low High	

Any combination of the above states will provide an attenuation approximately equal to the sum of the bits selected.

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS


Control & Bias Voltages


State	Bias Condition	
Low	0 to +0.2V at 500 μA Max.	
High	VDD ± 0.2V at 550 μA Max.	
Note: $VDD = +3V$ to 5V with $\pm 0.2V$ tolerance		

Absolute Maximum Ratings

Control Voltage (V1, V2)	VDD + 0.5 VDC	
RF Input Power	+28 dBm	
Bias Voltage (VDD)	+8.0 Vdc	
Storage Temperature	-65°C to +150°C	
Operating Temperature	-40°C to +85°C	
ESD Sensitivity (HBM)	Class 1C	
ESD Sensitivity (FICDM)	Class IV	

NOTES

- 1. PACKAGE BODY MATERIAL: LOW STRESS INJECTION MOLDED PLASTIC SILICA AND SILICON IMPREGNATED.
- 2. LEAD MATERIAL: COPPER ALLOY.
- 3. LEAD PLATING: 100% MATTE TIN.
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 5. CHARACTERS TO BE HELVETICA MEDIUM, .030 HIGH, LASER OR WHITE INK, LOCATED
- APPROXIMATELY AS SHOWN.
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 8. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [1]
HMC291SE	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	291S XXXX

- [1] XXXX 4 digit lot number is on the bottom of package
- [2] Max peak reflow temperature of 260°C