

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

v03.0710

InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 6 GHz

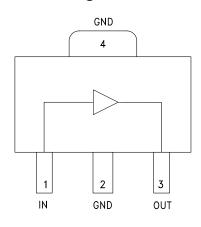
Typical Applications

The HMC311ST89(E) is ideal for:

- Cellular / PCS / 3G
- Fixed Wireless & WLAN
- CATV & Cable Modem
- Microwave Radio

Features

P1dB Output Power: +15.5 dBm


Output IP3: +31.5 dBm

Gain: 16 dB 50 Ohm I/O's

Industry Standard SOT89 Package

Included in the HMC-DK001 Designer's Kit

Functional Diagram

General Description

The HMC311ST89(E) is a GaAs InGaP Heterojunction Bipolar Transistor (HBT) Gain Block MMIC SMT DC to 6 GHz amplifier. Packaged in an industry standard SOT89, the amplifier can be used as either a cascadable 50 Ohm gain stage or to drive the LO of HMC mixers with up to +16.5 dBm output power. The HMC311ST89(E) offers 16 dB of gain and an output IP3 of +31.5 dBm while requiring only 54 mA from a +5V supply. The Darlington feedback pair used results in reduced sensitivity to normal process variations and yields excellent gain stability over temperature while requiring a minimal number of external bias components.

Electrical Specifications, Vs=5V, Rbias=22 Ohm, $T_A=+25^{\circ}$ C

Parameter		Min.	Тур.	Max.	Units
Gain	DC - 1.0 GHz 1.0 - 4.0 GHz 4.0 - 6.0 GHz	14.0 13.0 12.5	16.0 15.0 14.5		dB dB dB
Gain Variation Over Temperature	DC - 2.0 GHz 2.0 - 4.0 GHz 4.0 - 6.0 GHz		0.004 0.007 0.012	0.007 0.012 0.016	dB/ °C dB/ °C dB/ °C
Return Loss Input / Output	DC - 2.0 GHz 2.0 - 5.0 GHz 5.0 - 6.0 GHz		8 7 8		dB dB dB
Reverse Isolation	DC - 6 GHz		20		dB
Output Power for 1 dB Compression (P1dB)	DC - 2.0 GHz 2.0 - 4.0 GHz 4.0 - 6.0 GHz	13.5 12.0 10.0	15.5 15.0 13.0		dBm dBm dBm
Output Third Order Intercept (IP3)	DC - 1.0 GHz 1.0 - 2.0 GHz 2.0 - 4.0 GHz 4.0 - 6.0 GHz		31.5 30 27 24		dBm dBm dBm dBm
Noise Figure	DC - 4 GHz 4.0 - 6.0 GHz		4.5 5		dB
Supply Current (Icq)			55	74	mA

Note: Data taken with broadband bias tee on device output.

HMC311ST89* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS -

View a parametric search of comparable parts.

EVALUATION KITS

• HMC311ST89 Evaluation Board

DOCUMENTATION

Application Notes

- AN-1363: Meeting Biasing Requirements of Externally Biased RF/Microwave Amplifiers with Active Bias Controllers
- Broadband Biasing of Amplifiers General Application Note
- MMIC Amplifier Biasing Procedure Application Note
- Thermal Management for Surface Mount Components General Application Note

Data Sheet

· HMC311ST89 Data Sheet

TOOLS AND SIMULATIONS

HMC311ST89 S-Parameters

REFERENCE MATERIALS 🖵

Quality Documentation

- Package/Assembly Qualification Test Report: 3 Lead Plastic SOT89 Package (QTR: 10002 REV: 02)
- PCN: MS, QS, SOT, SOIC packages Sn/Pb plating vendor change
- Semiconductor Qualification Test Report: GaAs HBT-B (QTR: 2013-00229)

DESIGN RESOURCES 🖵

- HMC311ST89 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- · Symbols and Footprints

DISCUSSIONS

View all HMC311ST89 EngineerZone Discussions.

SAMPLE AND BUY 🖳

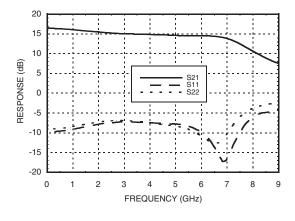
Visit the product page to see pricing options.

TECHNICAL SUPPORT

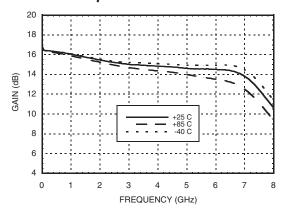
Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

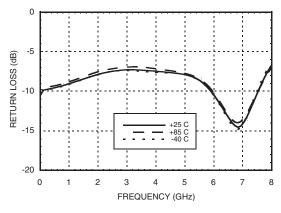
Submit feedback for this data sheet.

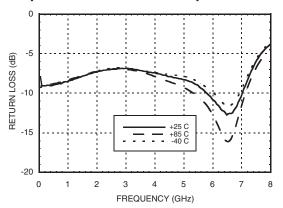


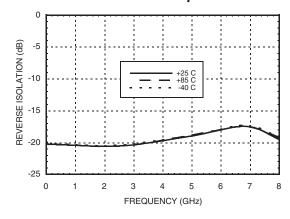
v03.0710

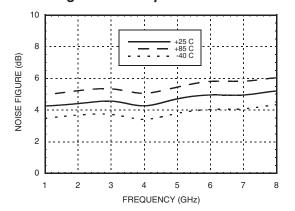


InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 6 GHz


Broadband Gain & Return Loss

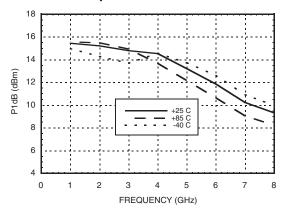

Gain vs. Temperature


Input Return Loss vs. Temperature

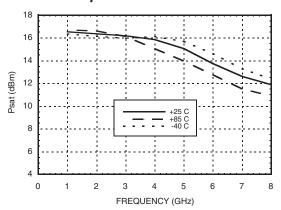

Output Return Loss vs. Temperature

Reverse Isolation vs. Temperature

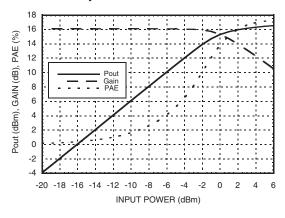
Noise Figure vs. Temperature

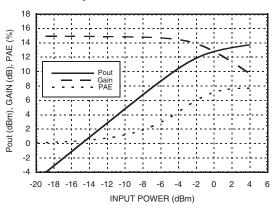


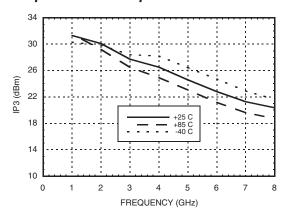
v03.0710

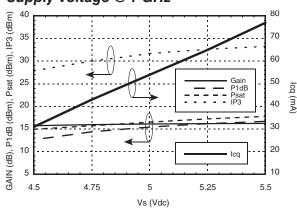


InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 6 GHz


P1dB vs. Temperature


Psat vs. Temperature

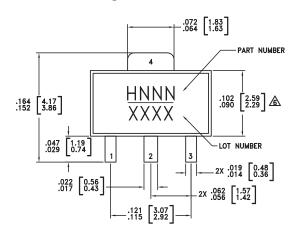

Power Compression @ 1 GHz

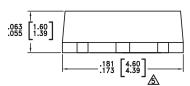

Power Compression @ 6 GHz

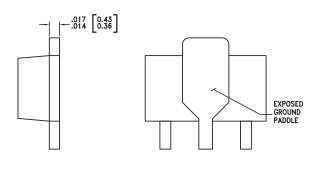
Output IP3 vs. Temperature

Gain, Power, OIP3 & Supply Current vs. Supply Voltage @ 1 GHz

v03.0710


InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 6 GHz


Absolute Maximum Ratings


Collector Bias Voltage (Vcc)	+7V	
RF Input Power (RFIN)(Vcc = +3.9V) +10 dBm		
Junction Temperature	150 °C	
Continuous Pdiss (T = 85 °C) (derate 5.21 mW/°C above 85 °C)	0.34 W	
Thermal Resistance (junction to lead)	191 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	

Outline Drawing

NOTES:

- 1. PACKAGE BODY MATERIAL:
 MOLDING COMPOUND MP-180S OR EQUIVALENT.
- 2. LEAD MATERIAL: Cu w/ Ag SPOT PLATING.
- 3. LEAD PLATING: 100% MATTE TIN.
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS]

ADIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
ADIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.

7. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

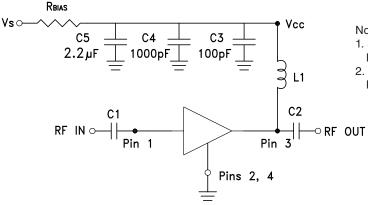
Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC311ST89	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H311 XXXX
HMC311ST89E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	<u>H311</u> XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 $^{\circ}\text{C}$
- [3] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v03.0710



InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 6 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	RFIN	This pin is DC coupled. An off chip DC blocking capacitor is required.	RFOUT
3	RFOUT	RF output and DC Bias for the output stage.	
2, 4	GND	These pins and package bottom must be connected to RF/DC ground.	GND =

Application Circuit

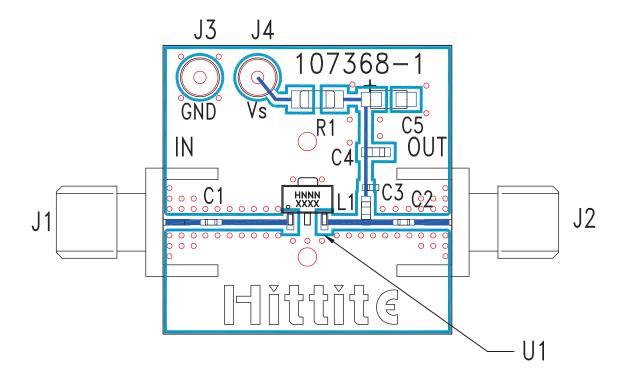
Note:

- Select Rbias to achieve Icq using equation below, Rbias ≥ 22 Ohm.
- 2. External blocking capacitors are required on RFIN and RFOUT.

$$lcq = \frac{Vs - 3.8}{Rbias}$$

Recommended Component Values

Component	Frequency (MHz)							
Component	50	900	1900	2200	2400	3500	5200	5800
L1	270 nH	56 nH	18 nH	18 nH	15 nH	8.2 nH	3.3 nH	3.3 nH
C1, C2	0.01 μF	100 pF						



v03.0710

InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 6 GHz

Evaluation PCB

List of Materials for Evaluation PCB 108313 [1]

Item	Description
J1 - J2	PCB Mount SMA Connector
J3 - J4	DC Pin
C1, C2	Capacitor, 0402 Pkg.
C3	100 pF Capacitor, 0402 Pkg.
C4	1000 pF Capacitor, 0603 Pkg.
C5	2.2 µF Capacitor, Tantalum
R1	Resistor, 0805 Pkg.
L1	Inductor, 0603 Pkg.
U1	HMC311ST89(E)
PCB [2]	107368 Evaluation PCB

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and package bottom should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350