

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China













# GaAs InGaP HBT MMIC BROADBAND AMPLIFIER GAIN BLOCK, DC - 6 GHz

### **Typical Applications**

Ideal as a Driver & Amplifier for:

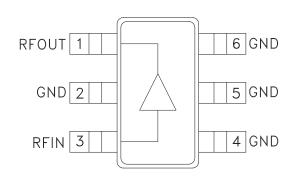
- 2.2 2.7 GHz MMDS
- 3.5 GHz Wireless Local Loop
- 5 6 GHz UNII & HiperLAN

#### **Features**

P1dB Output Power: +14 dBm

Output IP3: +27 dBm

Gain: 17 dB


Single Supply: +5V

High Reliability GaAs HBT Process

Ultra Small Package: SOT26

Included in the HMC-DK001 Designer's Kit

### **Functional Diagram**



### **General Description**

The HMC313 & HMC313E are GaAs InGaP Heterojunction Bipolar Transistor (HBT) MMIC amplifiers that operate from a single Vcc supply. The surface mount SOT26 amplifier can be used as a broadband gain stage or used with external matching for optimized narrow band applications. With Vcc biased at +5V, the HMC313(E) offers 17 dB of gain and +15 dBm of saturated power while only requiring 50 mA of current.

# Electrical Specifications, $T_A = +25$ °C, Vcc = +5.0V

| Parameter -                                        |        | Vcc = +5V |      |         |
|----------------------------------------------------|--------|-----------|------|---------|
|                                                    | Min.   | Тур.      | Max. | - Units |
| Frequency Range                                    | DC - 6 |           | GHz  |         |
| Gain                                               | 14     | 17        | 20   | dB      |
| Gain Variation Over Temperature                    |        | 0.02      | 0.03 | dB/°C   |
| Input Return Loss                                  |        | 7         |      | dB      |
| Output Return Loss                                 |        | 6         |      | dB      |
| Reverse Isolation                                  |        | 30        |      | dB      |
| Output Power for 1 dB Compression (P1dB) @ 1.0 GHz | 11     | 14        |      | dBm     |
| Saturated Output Power (Psat) @ 1.0 GHz            |        | 15        |      | dBm     |
| Output Third Order Intercept (IP3) @ 1.0 GHz       | 24     | 27        |      | dBm     |
| Noise Figure                                       |        | 6.5       |      | dB      |
| Supply Current (Icc)                               |        | 50        |      | mA      |

Note: Data taken with broadband bias tee on device output.

# HMC313\* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

# COMPARABLE PARTS 🖵

View a parametric search of comparable parts.

# **EVALUATION KITS**

• HMC313 Evaluation Board

# **DOCUMENTATION**

#### **Application Notes**

 AN-1363: Meeting Biasing Requirements of Externally Biased RF/Microwave Amplifiers with Active Bias Controllers

#### **Data Sheet**

HMC313 Data Sheet

# TOOLS AND SIMULATIONS 🖵

HMC313 S-Parameters

### REFERENCE MATERIALS 🖳

#### **Quality Documentation**

- HMC Legacy PCN: SOT26 and SOT26E packages -Relocation of pre-existing production equipment to new building
- Package/Assembly Qualification Test Report: Plastic Encapsulated SOT26 (QTR: 02017 REV: 01)
- PCN: MS, QS, SOT, SOIC packages Sn/Pb plating vendor change
- Semiconductor Qualification Test Report: GaAs HBT-B (QTR: 2013-00229)

# DESIGN RESOURCES 🖵

- HMC313 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

### **DISCUSSIONS**

View all HMC313 EngineerZone Discussions.

# SAMPLE AND BUY 🖵

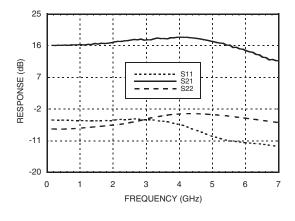
Visit the product page to see pricing options.

# TECHNICAL SUPPORT

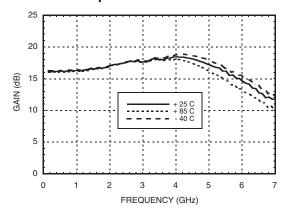
Submit a technical question or find your regional support number.

### DOCUMENT FEEDBACK $\Box$

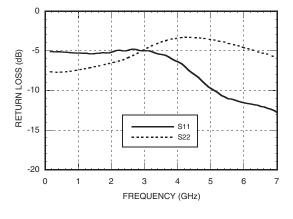
Submit feedback for this data sheet.


This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

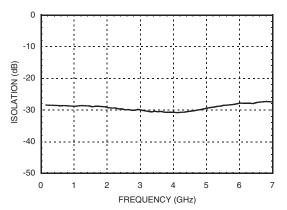




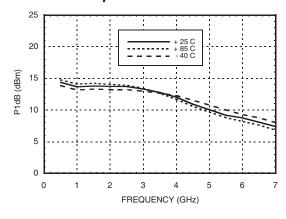

# GaAs InGaP HBT MMIC BROADBAND AMPLIFIER GAIN BLOCK, DC - 6 GHz


#### Gain & Return Loss

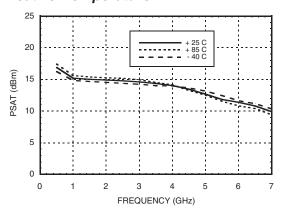



#### Gain vs. Temperature




### **Input & Output Return Loss**



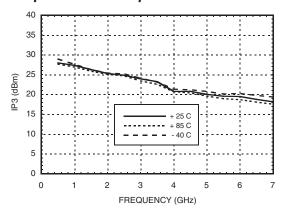

#### **Reverse Isolation**



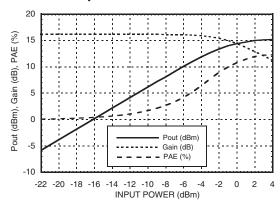
#### P1dB vs. Temperature



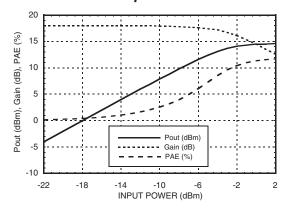
#### Psat vs. Temperature






# GaAs InGaP HBT MMIC BROADBAND AMPLIFIER GAIN BLOCK, DC - 6 GHz


#### Output IP3 vs. Temperature



#### Power Compression @ 1 GHz

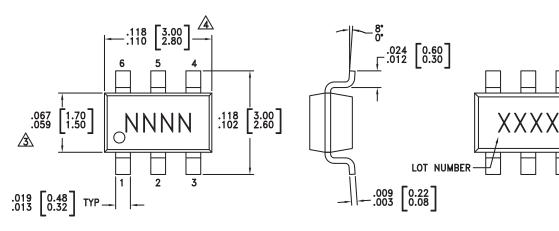


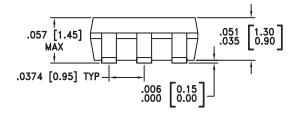
#### Power Compression @ 3 GHz








# GaAs InGaP HBT MMIC BROADBAND AMPLIFIER GAIN BLOCK, DC - 6 GHz


### **Absolute Maximum Ratings**

| Collector Bias Voltage (Vcc)                                    | +5.5 Vdc       |  |
|-----------------------------------------------------------------|----------------|--|
| RF Input Power (RFIN)(Vcc = +5Vdc)                              | +20 dBm        |  |
| Junction Temperature                                            | 150 °C         |  |
| Continuous Pdiss (T = 85 °C)<br>(derate 3.99 mW/°C above 85 °C) | 0.259 W        |  |
| Thermal Resistance (junction to lead)                           | 251 °C/W       |  |
| Storage Temperature                                             | -65 to +150 °C |  |
| Operating Temperature                                           | -40 to +85 °C  |  |
| ESD Sensitivity (HBM)                                           | Class 1A       |  |



### **Outline Drawing**





#### NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 5. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND

### Package Information

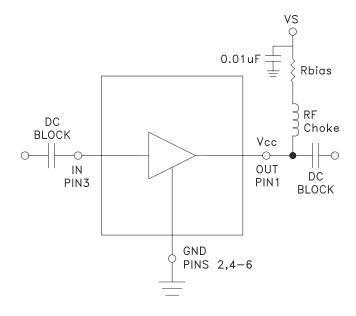
| Part Number | Package Body Material                              | Lead Finish   | MSL Rating | Package Marking [3] |
|-------------|----------------------------------------------------|---------------|------------|---------------------|
| HMC313      | Low Stress Injection Molded Plastic                | Sn/Pb Solder  | MSL1 [1]   | H313<br>XXXX        |
| HMC313E     | RoHS-compliant Low Stress Injection Molded Plastic | 100% matte Sn | MSL1 [2]   | 313E<br>XXXX        |

- [1] Max peak reflow temperature of 235  $^{\circ}\text{C}$
- [2] Max peak reflow temperature of 260  $^{\circ}\text{C}$
- [3] 4-Digit lot number XXXX





# GaAs InGaP HBT MMIC BROADBAND AMPLIFIER GAIN BLOCK, DC - 6 GHz


### **Pin Descriptions**

| Pin Number | Function | Description                                                            | Interface Schematic |
|------------|----------|------------------------------------------------------------------------|---------------------|
| 1          | RFOUT    | This pin is DC coupled. An off chip DC blocking capacitor is required. | RFOUT               |
| 3          | RFIN     | This pin is DC coupled. An off chip DC blocking capacitor is required. |                     |
| 2, 4-6     | GND      | These pins must be connected to RF/DC ground.                          | GND<br>=            |

### **Application Circuit**

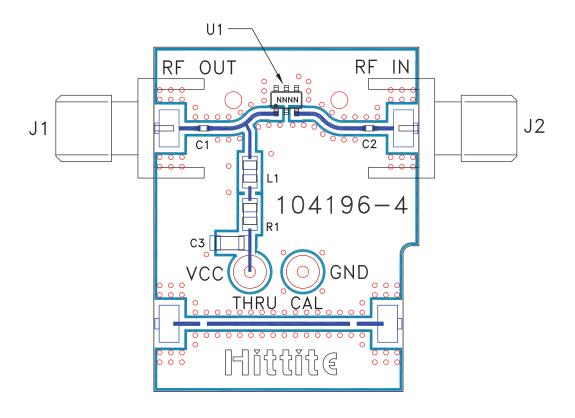
# Recommended Bias Resistor Values for Icc = 50 mA, Rbias = (Vs - 5.0) / Icc

| Supply Voltage (Vs) | 5V  | 6V    | 8V   |
|---------------------|-----|-------|------|
| RBIAS VALUE         | 0 Ω | 20 Ω  | 62 Ω |
| RBIAS POWER RATING  |     | 1/4 W | ½ W  |



#### Note:

- 1. Select Rbias to achieve desired Vcc voltage on Pin 1.
- 2. External Blocking Capacitors are required on Pins 1 & 3.




v06.0109 **HS√** 



# GaAs InGaP HBT MMIC BROADBAND AMPLIFIER GAIN BLOCK, DC - 6 GHz

#### **Evaluation PCB**



#### List of Materials for Evaluation PCB 104217 [1]

| Item    | Description                 |
|---------|-----------------------------|
| J1 - J2 | PCB Mount SMA Connector     |
| C1 - C2 | 100 pF Capacitor, 0402 Pkg. |
| C3      | 100 pF Capacitor, 0805 Pkg. |
| L1      | 22 nH Inductor, 0805 Pkg.   |
| R1      | 22 Ω Resistor, 0805 Pkg.    |
| U1      | HMC313 / HMC313E            |
| PCB [2] | 104196 Evaluation PCB       |

<sup>[1]</sup> Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Arlon 25FR or Roger 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.