

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

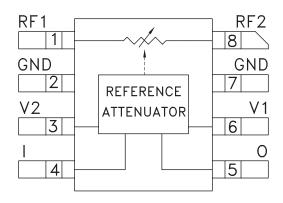
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

GaAs MMIC SMT VOLTAGE-VARIABLE ATTENUATOR, DC - 8 GHz

Typical Applications

The HMC346C8 is ideal for:


- Basestation Infrastructure
- Fiber Optics & Broadband Telecom
- Microwave Radio & VSAT
- Military Radios, Radar, & ECM
- Test Instrumentation

Features

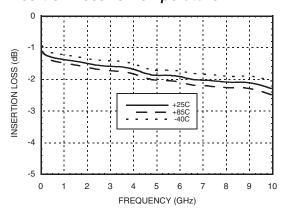
Wide Bandwidth: DC - 8 GHz Low Phase Shift vs. Attenuation 30 dB Attenuation Range

Surface Mount Ceramic Package

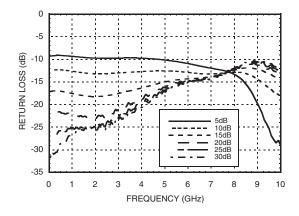
Functional Diagram

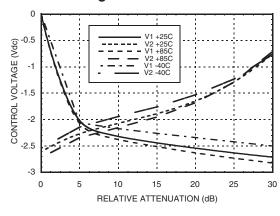
General Description

The HMC346C8 is an absorptive Voltage Variable Attenuator (VVA) in a non-hermetic surface-mount ceramic package operating from DC - 8 GHz. It features an on-chip reference attenuator for use with an external op-amp to provide simple single voltage attenuation control, 0 to -3V. The device is ideal in designs where an analog DC control signal must control RF signal levels over a 30 dB amplitude range. Applications include AGC circuits and temperature compensation of multiple gain stages in microwave radios and test instrumentation.

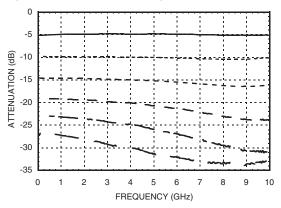

Electrical Specifications, $T_A = +25^{\circ}$ C, 50 ohm system

Parameter		Min	Typical	Max	Units
Insertion Loss	DC - 6 GHz DC - 8 GHz		1.9 2.1	2.9 3.1	dB dB
Attenuation Range	DC - 8 GHz		30		dB
Return Loss	DC - 8 GHz		10		dB
Switching Characteristics	tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF)		2 8		ns ns
Input Power for 0.25 dB Compression (0.5 - 8 GHz)	Min. Atten. Atten. >2 dB		+8 -2		dBm dBm
Input Third Order Intercept (0.5 - 8 GHz) (Two-tone Input Power = -8 dBm Each Tone)	Min. Atten. Atten. >2 dB		+25 +10		dBm dBm

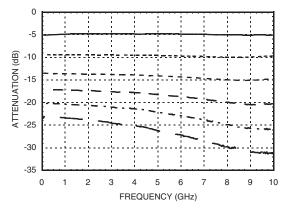



Insertion Loss vs. Temperature

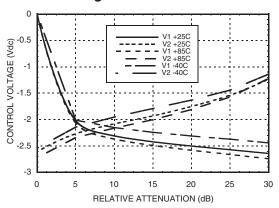
Return Loss vs. Attenuation



Relative Attenuation vs. Control Voltage @ 4 GHz

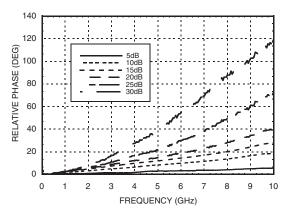


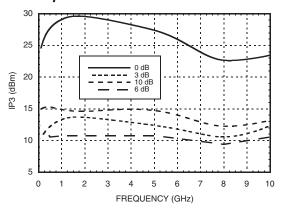
GaAs MMIC SMT VOLTAGE-VARIABLE ATTENUATOR, DC - 8 GHz


Relative Attenuation, Control Voltage Optimized for 4 GHz Operation

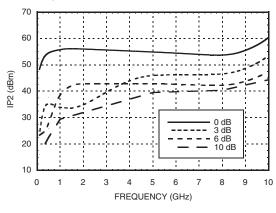
Relative Attenuation, Control Voltage Optimized for 8 GHz Operation

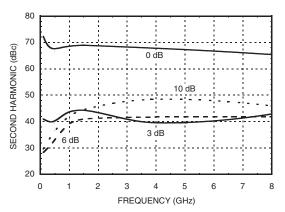
Relative Attenuation vs. Control Voltage @ 8 GHz

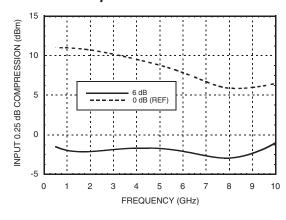


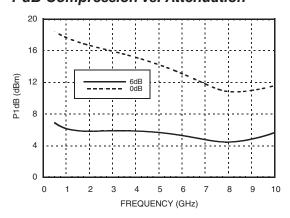


GaAs MMIC SMT VOLTAGE-VARIABLE ATTENUATOR, DC - 8 GHz


Relative Phase


Input Third Order Intercept vs. Attenuation*

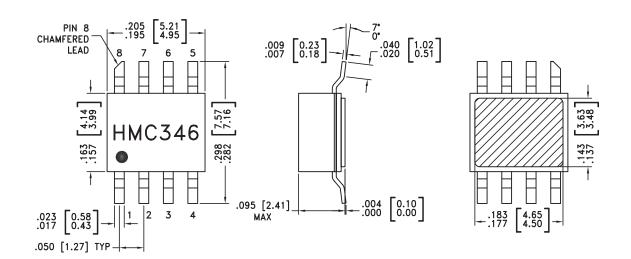

Input Second Order Intercept vs. Attenuation*


Second Harmonic vs. Attenuation

0.25 dB Compression vs. Attenuation

1 dB Compression vs. Attenuation

^{*}Two-tone input power = -8 dBm each tone.


GaAs MMIC SMT VOLTAGE-VARIABLE ATTENUATOR, DC - 8 GHz

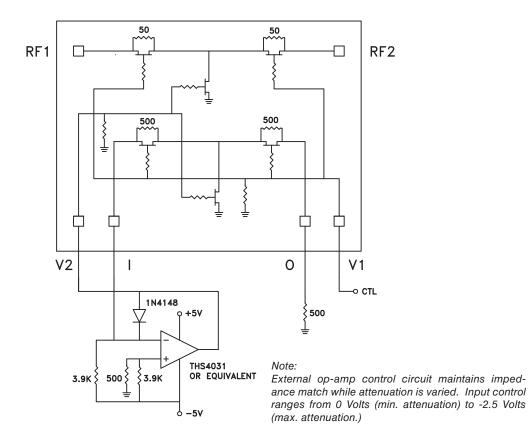
Absolute Maximum Ratings

RF Input Power	+18 dBm
Control Voltage Range	+1.0 to -5V
Channel Temperature	150 °C
Thermal Resistance	190 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A

Outline Drawing

NOTES:

- 1. PACKAGE MATERIAL: ALUMINA LOADED BOROSILICATE GLASS.
- 2. LEAD, BASE, COVER MATERIAL: KOVAR™ (#7052 CORNING).
- 3. PLATING: ELECTROLYTIC GOLD 50 MICROINCHES MIN., OVER ELECTROLYTIC NICKEL 50 MICROINCHES MIN.
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 5. TOLERANCES: ±.005 [0.13] UNLESS OTHERWISE SPECIFIED.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.



GaAs MMIC SMT VOLTAGE-VARIABLE ATTENUATOR, DC - 8 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic	
1, 8	RF1, RF2	This pin is DC coupled and matched to 50 Ohms. Blocking capacitors are required if RF line potential is not equal to 0V.		
2, 7	GND	This pin must be DC grounded.	GND =	
3, 6	V2, V1	Control Input (Master).	500	
4	I	Control Input (Slave).	500	
5	0	This pin must have an external 500 Ohm resistor to ground.		

Single-Line Control Driver



GaAs MMIC SMT VOLTAGE-VARIABLE ATTENUATOR, DC - 8 GHz

Evaluation PCB

List of Materials for Evaluation PCB 109023 [1]

Item	Description
J1 - J2	PCB Mount SMA RF Connector
J3 - J7	DC PIN
U1	HMC346C8
PCB [2]	Eval Board 102084-5

[1] Reference this number when ordering complete evaluation PCB [2]Circuit Board Material: Rogers 4350

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF ports should be 50 ohm impedance and the package ground leads and package bottom should be connected directly to the PCB RF ground plane, similar to that shown above. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.