

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

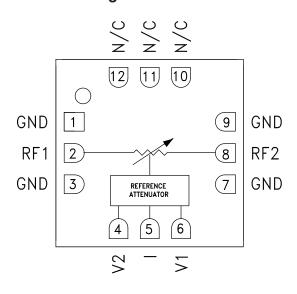
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


GaAs MMIC VOLTAGE-VARIABLE ATTENUATOR, DC - 18 GHz

Typical Applications

The HMC346LC3B is ideal for:

- Test Instrumentation
- Fiber Optics & Broadband Telecom
- Microwave Radio & VSAT
- Military Radios, Radar, & ECM

Functional Diagram

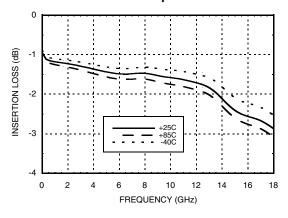
Features

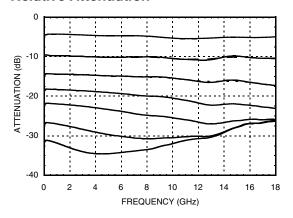
Wide Bandwidth: DC - 18 GHz
Low Phase Shift vs. Attenuation
30 dB Attenuation Range
Simplified Voltage Control
RoHS Compliant 3 x 3 mm SMT Package

General Description

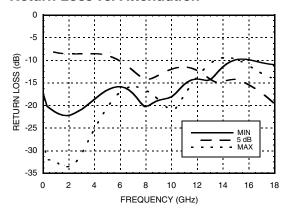
The HMC346LC3B is an absorptive Voltage Variable Attenuator (VVA) in a leadless "Pb free" RoHS compliant SMT mount ceramic package operating from DC - 18 GHz. It features an on-chip reference attenuator for use with an external op-amp to provide simple single voltage attenuation control, 0 to -3V. The device is ideal in designs where an analog DC control signal must control RF signal levels over a 30 dB amplitude range. The HMC346LC3B allows the use of surface mount manufacturing techniques.

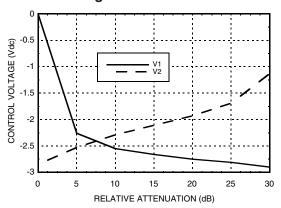
Electrical Specifications, $T_A = +25^{\circ}$ C, 50 Ohm system

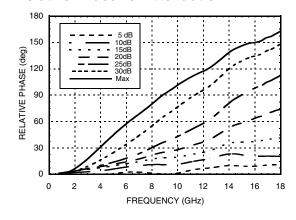

Parameter		Min	Typical	Max	Units
Insertion Loss	DC - 10 GHz DC - 14 GHz DC - 18 GHz		1.5 2.2 2.8	2.0 2.7 3.5	dB dB dB
Attenuation Range	DC - 12 GHz DC - 18 GHz	26 22	30 26		dB dB
Return Loss	DC - 18 GHz		10		dB
Input Power for 0.25 dB Compression (0.5 - 18 GHz)	Min. Atten: Atten. >2 dB:		+8 -4		dBm dBm
Input Third Order Intercept (0.5 - 18 GHz) (Two-tone Input Power = -8 dBm Each Tone)	Min. Atten: Atten. >2 dB:		+25 +10		dBm dBm
Switching Characteristics	tRISE, tFALL (10/90% RF): tON, tOFF (50% CTL to 10/90% RF):		2 8		ns ns

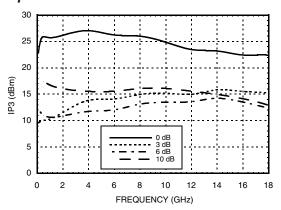


GaAs MMIC VOLTAGE-VARIABLE ATTENUATOR, DC - 18 GHz


Insertion Loss vs. Temperature

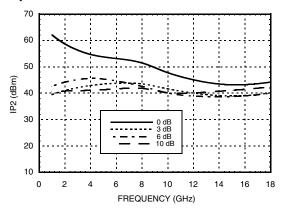

Relative Attenuation

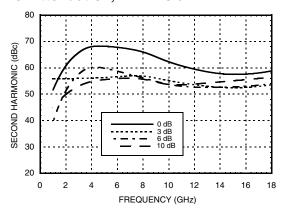

Return Loss vs. Attenuation


Relative Attenuation vs. Control Voltage @ 10 GHz

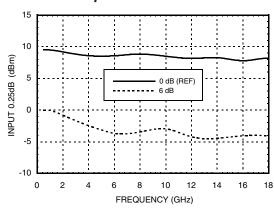
Relative Phase vs. Attenuation

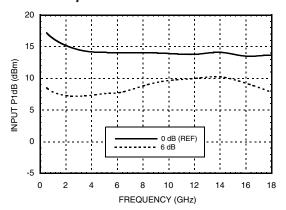
Input IP3 vs. Attenuation*


^{*}Two-tone input power = -8 dBm each tone, 1 MHz spacing.



GaAs MMIC VOLTAGE-VARIABLE ATTENUATOR, DC - 18 GHz

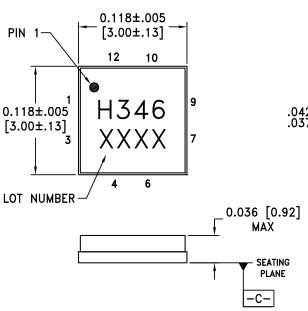

Input IP2 vs. Attenuation*

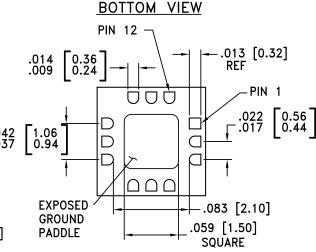

Second Harmonic vs. Attenuation, Pin = -8 dBm

0.25 dB Compression vs. Attenuation

1 dB Compression vs. Attenuation

^{*}Two-tone input power = -8 dBm each tone, 1 MHz spacing.


GaAs MMIC VOLTAGE-VARIABLE ATTENUATOR, DC - 18 GHz


Absolute Maximum Ratings

RF Input Power	+18 dBm	
Control Voltage Range	+1 to -5V	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	
ESD Sensitivity (HBM)	Class 1A	

Outline Drawing

NOTES:

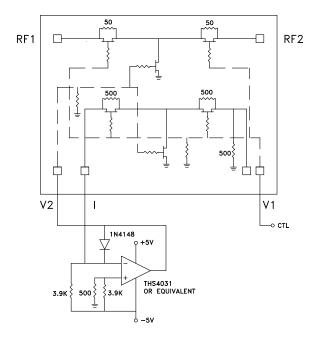
- 1. PACKAGE BODY MATERIAL: ALUMINA
- 2. LEAD AND GROUND PADDLE PLATING: GOLD FLASH OVER Ni
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC346LC3B	Alumina, White	Gold over Nickel	MSL3 ^[1]	H346 XXXX

^[1] Max peak reflow temperature of 260 °C

^{[2] 4-}Digit lot number XXXX

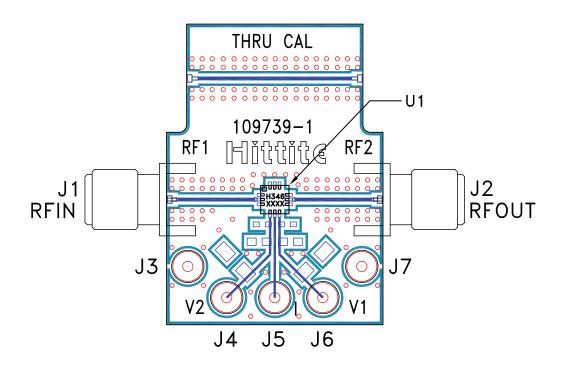


GaAs MMIC VOLTAGE-VARIABLE ATTENUATOR, DC - 18 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 3, 7, 9	GND	Package bottom has exposed metal paddle that must also be connected to PCB RF ground.	GND =
2, 8	RF1 RF2	This pin is DC coupled and matched to 50 Ohm. Blocking capacitors are required if the RF line potential is not equal to 0V.	
4, 6	V2, V1	Control input (master).	500
5	I	Control input (slave).	500
10, 11, 12	N/C	This pin may be connected to PCB RF/DC ground. Performance will not be affected.	

Single-Line Control Driver


External op-amp control circuit maintains impedance match while attenuation is varied. Input control ranges from 0 Volts (min. attenuation) to -3.0 Volts (max. attenuation.)

GaAs MMIC VOLTAGE-VARIABLE ATTENUATOR, DC - 18 GHz

Evaluation PCB

List of Materials for Evaluation PCB 109741 [1]

Item	Description
J1 - J2	PCB Mount SMA RF Connector
J3 - J7	DC Pin
U1	HMC346LC3B VVA
PCB [2]	109739-1 Evaluation PCB

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the application should be generated with proper RF circuit design techniques. Signal lines at the RF ports should be 50 Ohm impedance and the package ground leads and package bottom should be connected directly to the PCB RF ground plane, similar to that shown above. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.

^[2] Circuit Board Material: Rogers 4350