

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

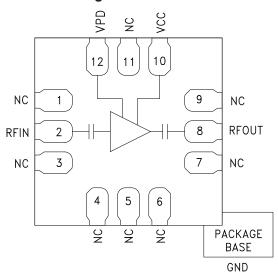
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HBT GAIN BLOCK MMIC AMPLIFIER, 4 - 10 GHz

Typical Applications

The HMC3587LP3BE is ideal for:


- Cellular / PCS / 3G
- Fixed Wireless & WLAN
- CATV, Cable Modem & DBS
- Microwave Radio & Test Equipment
- IF & RF Applications

Features

High Output IP3: +25 dBm Single Positive Supply: +5V Low Noise Figure: 3.5 dB [1]

12 Lead 3x3 mm SMT Package: 9mm²

Functional Diagram

General Description

The HMC3587LP3BE is a HBT Gain Block MMIC amplifier covering 4 GHz to 10 GHz and packaged in a 3x3 mm plastic QFN SMT package. This versatile amplifier can be used as a cascadable IF or RF gain stage in 50 Ohm applications. The HMC3587LP3BE delivers 14.5 dB gain, and +13 dBm output P1dB with only 3.5 dB noise figure.

Electrical Specifications, $T_A = +25^{\circ}$ C, Vcc = 5V, Vpd = 5V

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range		4 - 5			5 - 10		GHz
Gain ^[1]	12.5	14.5		13	15		dB
Gain Variation Over Temperature		0.009			0.012		dB / °C
Input Return Loss		14			12		dB
Output Return Loss		12			13		dB
Output Power for 1 dB Compression (P1dB)	8	11		10.5	13		dBm
Output Third Order Intercept (IP3) (Pout = 0 dBm per tone, 1 MHz spacing)		23			25		dBm
Noise Figure [1]		4.5	6		3.5	6	dB
Supply Current 1 (Icc)		43	60		43	60	mA
Supply Current 2 (lpd)		4	5		4	5	mA

[1] Board loss subtracted out.

HMC3587* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖳

View a parametric search of comparable parts.

EVALUATION KITS

HMC3587LP3B Evaluation Board

DOCUMENTATION

Application Notes

 AN-1363: Meeting Biasing Requirements of Externally Biased RF/Microwave Amplifiers with Active Bias Controllers

Data Sheet

· HMC3587 Data Sheet

REFERENCE MATERIALS -

Quality Documentation

 Semiconductor Qualification Test Report: GaAs HBT-A (QTR: 2013-00228)

DESIGN RESOURCES 🖵

- HMC3587 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC3587 EngineerZone Discussions.

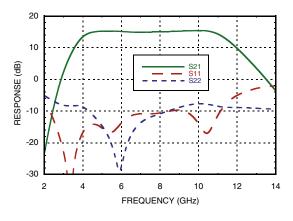
SAMPLE AND BUY 🖵

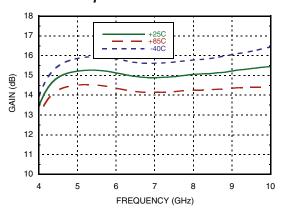
Visit the product page to see pricing options.

TECHNICAL SUPPORT 🖳

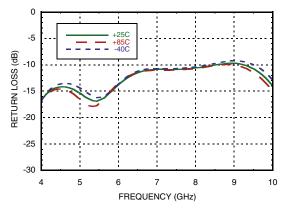
Submit a technical question or find your regional support number.

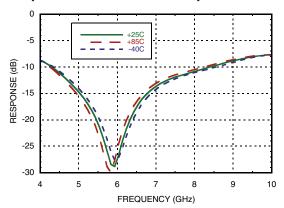
DOCUMENT FEEDBACK 🖳

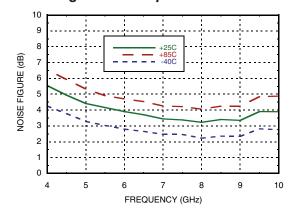

Submit feedback for this data sheet.

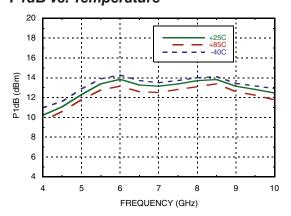


HBT GAIN BLOCK MMIC AMPLIFIER, 4 - 10 GHz


Gain & Return Loss

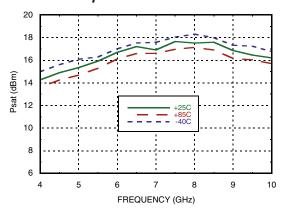

Gain vs. Temperature

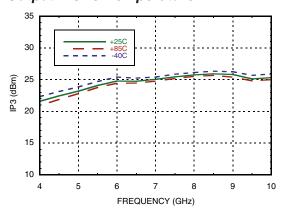

Input Return Loss vs. Temperature


Output Return Loss vs. Temperature

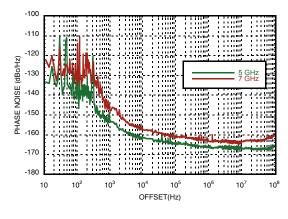
Noise Figure vs. Temperature

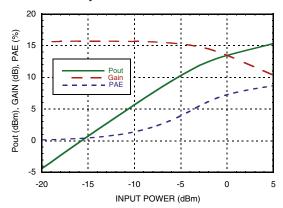
P1dB vs. Temperature

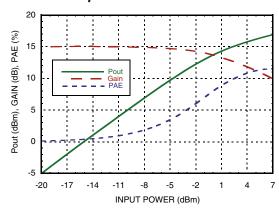


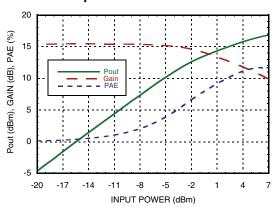


HBT GAIN BLOCK MMIC AMPLIFIER, 4 - 10 GHz


Psat vs. Temperature

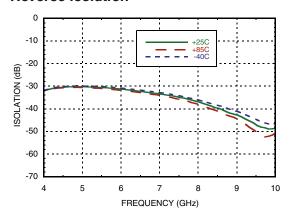

Output IP3 vs. Temperature


Phase Noise @ Pin=0 dBm


Power Compression @ 5 GHz

Power Compression @ 7 GHz

Power Compression @ 9 GHz

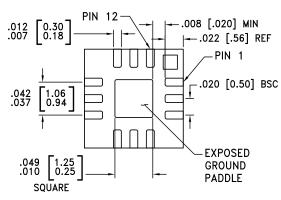


HBT GAIN BLOCK MMIC AMPLIFIER, 4 - 10 GHz

Reverse Isolation

Absolute Maximum Ratings

Drain Bias Voltage	6 Vdc
RF Input Power (RFIN)	+12 dBm
Channel Temperature	150 °C
Continuous Pdiss (T=85 °C) (derate 7.87 mW/ °C Above +85 °C)	512 mW
Thermal Resistance (channel to ground paddle)	127 °C/W
Storage Temperature	-65 to 150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A




HBT GAIN BLOCK MMIC AMPLIFIER, 4 - 10 GHz

Outline Drawing

BOTTOM VIEW

NOTES:

- PACKAGE BODY MATERIAL: LOW STRESS INJECTION MOLDED PLASTIC SILICA AND SILICON IMPREGNATED.
- 2. LEAD AND GROUND PADDLE MATERIAL: COPPER ALLOY.
- 3. LEAD AND GROUND PADDLE PLATING: 100% MATTE TIN.
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 5. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- CHARACTERS TO BE HELVETICA MEDIUM, .018 HIGH, WHITE INK, OR LASER MARK LOCATED APPROX. AS SHOWN.
- PAD BURR LENGTH SHALL BE 0.15mm MAX. PAD BURR HEIGHT SHALL BE 0.05mm MAX.
- 8. PACKAGE WARP SHALL NOT EXCEED 0.05mm
- 9. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 10. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED PCB LAND PATTERN.

Package Information

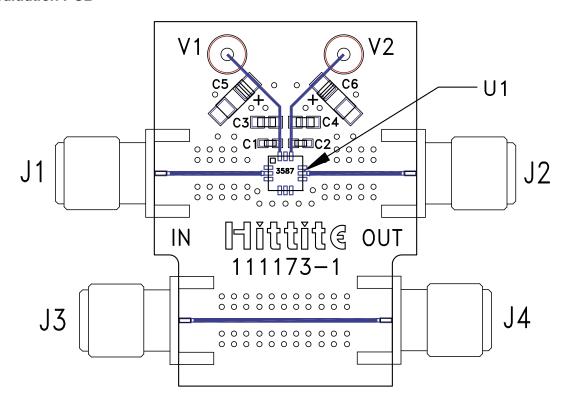
9				
Part Number	Package Body Material	Lead Finish	MSL Rating [2]	Package Marking [1]
HMC3587	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1	<u>H3587</u> XXXX

^{[1] 4-}Digit lot number XXXX

[2] Max peak reflow temperature of 260 °C

HBT GAIN BLOCK MMIC AMPLIFIER, 4 - 10 GHz

Pin Descriptions


Pid Number	Function	Description	Interface Schematic
1, 3, 4, 5, 6, 7, 9, 11	NC	No connection nenscessary. These pins may be connected to RF/DC ground. Performance will not be affected.	
2	RFIN	This pin is AC coupled and matched to 50 Ohms.	RFIN O——
8	RFOUT	This pin is AC coupled and matched to 50 Ohms.	— —○RFOUT
10	Vcc	Power supply voltage for the amplifier	Vcc ESD
12	Vpd	Power Control Pin for proper control bias	ESD Vpd
GND Paddle	GND	Ground Paddle must be connected to RF/DC ground.	○ GND =

HBT GAIN BLOCK MMIC AMPLIFIER, 4 - 10 GHz

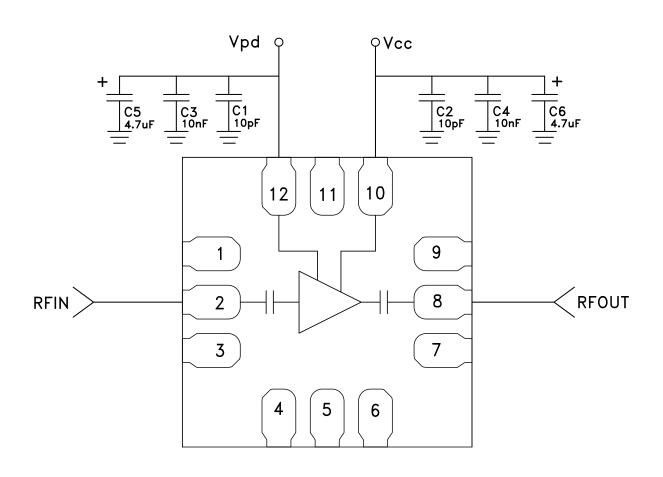
Evaluation PCB

List of Material for Evaluation PCB EVAL01-HMC3587LP3BE [1]

Item	Description	
J1, J4	PCB Mount SMA RF Connector	
C1 - C2	10 pF Capacitor, 0402 Pkg.	
C3 - C4	10000 pF Capacitor, 0603 Pkg.	
C5 -C6	4.7 uF Capacitor, Tantalum.	
U1	HMC3587LP3BE	
PCB [2]	111173-1 Evaluation Board	

^{1]} Reference this number when ordering complete evaluation PCB

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.


^[2] Circuit Board Material: Rogers 4350 or Arlon 25FR

HBT GAIN BLOCK MMIC AMPLIFIER, 4 - 10 GHz

Application Circuit

