imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

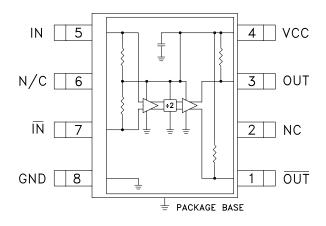
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HMC361S8G / 361S8GE

v07.1114

SMT GaAs HBT MMIC DIVIDE-BY-2, DC - 10 GHz

Typical Applications


Prescaler for DC to X band PLL applications:

- Satellite communication systems
- Fiber optic
- Point-to-point and point-to-multi-point radios
- VSAT

Features

Ultra low SSB phase noise: -148 dBc/Hz Wide bandwidth Output power: 3 dBm Single DC supply: +5V S8G SMT package

Functional Diagram

General Description

The HMC361S8G & HMC361S8GE are low noise divide-by-2 static dividers with InGaP GaAs HBT technology in 8 lead surface mount plastic packages. This device operates from DC (with a square wave input) to 10 GHz input frequency with a single +5V DC supply. The low additive SSB phase noise of -148 dBc/Hz at 100 kHz offset helps the user maintain good system noise performance.

Electrical Specifications, $T_A = +25^{\circ}$ C, 50 Ohm System, Vcc = 5V

Parameter	Conditions	Min.	Тур.	Max.	Units
Input frequency	Sine wave input. ^{[1] [2]}	0.4		10	GHz
Input power range	Fin = 0.4 GHz to 1 GHz	-5		+10	dBm
	Fin = 1 GHz to 8 GHz	-15		+10	dBm
	Fin = 8 GHz to 10 GHz	-10		+2	dBm
Output power	Fin = 6 GHz	0	3		dBm
	Fin = 10 GHz	-6			dBm
Reverse leakage	Both RF outputs terminated		45		dB
SSB phase noise (100 kHz offset)	Pin = 0 dBm, Fin = 6 GHz		-148		dBc/Hz
Output transition time	Pin = 0 dBm, Fout = 882 MHz		100		ps
Supply current (Icc)			83		mA

[1] Divider will operate down to near DC for square-wave input signal.

[2] For stable operation without an input signal, refer to Analog Devices Application Note, "Frequency Divider Operation & Compensation with No Input Signal."

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC361S8G* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

• HMC361S8G Evaluation Board

DOCUMENTATION

Data Sheet

HMC361S8G Data Sheet

TOOLS AND SIMULATIONS \square

• HMC361S8G S-Parameters

REFERENCE MATERIALS

Quality Documentation

- HMC Legacy PCN: S## and S##E packages Relocation of pre-existing production equipment to new building
- Package/Assembly Qualification Test Report: Plastic Encapsulated SOIC (QTR: 02018 REV: 01)
- PCN: MS, QS, SOT, SOIC packages Sn/Pb plating vendor change
- Semiconductor Qualification Test Report: GaAs HBT-A (QTR: 2013-00228)

DESIGN RESOURCES

- HMC361S8G Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

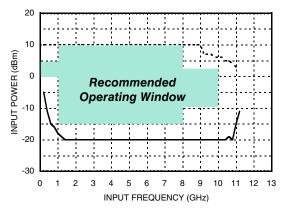
View all HMC361S8G EngineerZone Discussions.

SAMPLE AND BUY

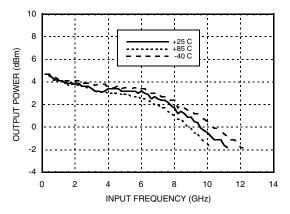
Visit the product page to see pricing options.

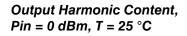
TECHNICAL SUPPORT

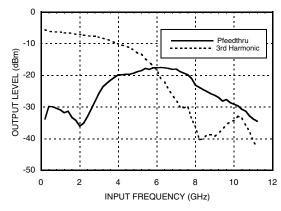
Submit a technical question or find your regional support number.


DOCUMENT FEEDBACK

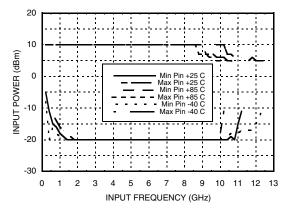
Submit feedback for this data sheet.



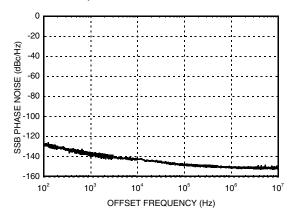



Input Sensitivity Window, T = 25 °C

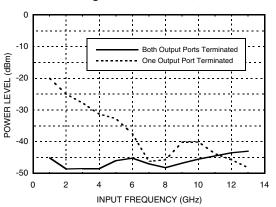
Output Power vs. Temperature



HMC361S8G / 361S8GE

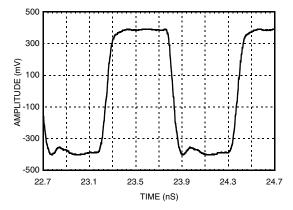

v07.1114

SMT GaAs HBT MMIC DIVIDE-BY-2, DC - 10 GHz


Input Sensitivity Window vs. Temperature

Residual Phase Noise Performance, Pin = 0 dBm, $T = 25 \degree C$

Reverse Leakage, Pin = 0 dBm, T = 25 °C



Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Output Voltage Waveform, Pin = 0 dBm, Fout = 882 MHz, T = 25 °C

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

HMC361S8G / 361S8GE

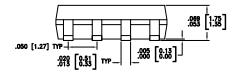
v07.1114

SMT GaAs HBT MMIC DIVIDE-BY-2, DC - 10 GHz

Absolute Maximum Ratings

RF input (Vcc = +5V)	+13 dBm
Vcc	+5.5V
VLogic	Vcc -1.6V to Vcc -1.2V
Junction temperature (T _J)	135 °C
Continuous Pdiss (T = 85 °C) (derate 15.9 mW/°C above 85 °C)	0.79 W
Thermal resistance (R _{TH}) (junction to ground paddle)	63 °C/W
Storage temperature	-65 °C to +150 °C
Operating temperature	-40 °C to +85 °C


Typical Supply Current vs. Vcc


Vcc (V)	Icc (mA)
4.75	74
5.0	83
5.25	89

EXPOSED GROUND PADDLE MUST BE CONNECTED TO RF/DC GROUND.

Note: Divider will operate over full voltage range shown above

Outline Drawing

.095 2.41

NOTES:

.050 [1.27 .016 [0.41]

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15 mm PER SIDE.

.110 [2.79]

- A DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25 mm PER SIDE.
- 5. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[3]
HMC361S8G	Low stress injection molded plastic	Sn/Pb solder	MSL1 ^[1]	H361 XXXX
HMC361S8GE	RoHS-compliant low stress injection molded plastic	100% matte Sn	MSL1 ^[2]	<u>H361</u> XXXX

[1] Max peak reflow temperature of 235 $^\circ\text{C}$

[2] Max peak reflow temperature of 260 °C

[3] 4-digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC361S8G / 361S8GE

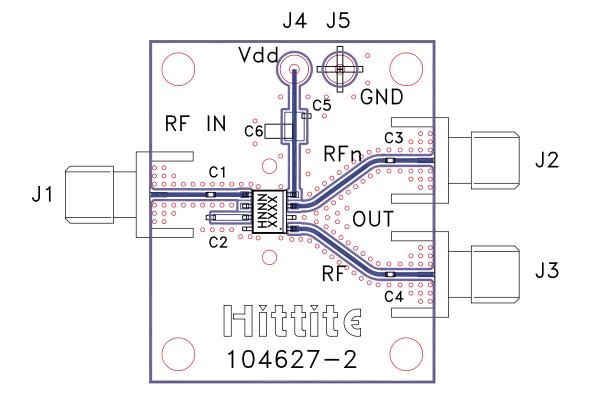
v07.1114

SMT GaAs HBT MMIC DIVIDE-BY-2, DC - 10 GHz

Pin Description

Pin Number	Function	Description	Interface Schematic
1	Ουτ	Divided output 180° out of phase with pin 3 and must be DC blocked	OUT
2, 6	N/C	N/C or ground	
3	OUT	Divided output, DC block required	OUT
4	VCC	Supply voltage 5V \pm 0.25V.	5V 2550
5	IN	RF input must be DC blocked.	50 IN
7	ĪN	RF input 180° out of phase with pin 5, DC block required for differential operation or A/C ground for single ended applications	50 5V
8	GND	Ground backside of package has exposed metal ground slug which must be connected to ground.	⊖ GND

4



Evaluation PCB

HMC361S8G / 361S8GE

SMT GaAs HBT MMIC

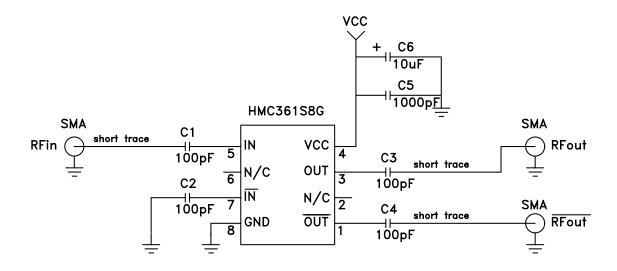
DIVIDE-BY-2, DC - 10 GHz

List of Materials for Evaluation PCB 104631 [1]

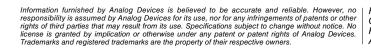
Item	Description
J1 - J3	PCB mount SMA RF connector
C1 - C4	100 pF capacitor, 0402 pkg.
C5	1000 pF capacitor, 0603 pkg.
C6	10 µF tantalum capacitor
U1	HMC361S8G / HMC361S8GE divide-by-2
PCB [2]	104627 eval board

Reference this number when ordering complete evaluation PCB
Circuit board material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ω impedance while the package ground leads and backside ground slug should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request. This evaluation board is designed for single ended input testing. J2 and J3 provide differential output signals.


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC361S8G / 361S8GE


SMT GaAs HBT MMIC DIVIDE-BY-2, DC - 10 GHz

Application Circuit

FREQUENCY DIVIDERS & DETECTORS - SMT

4

