

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

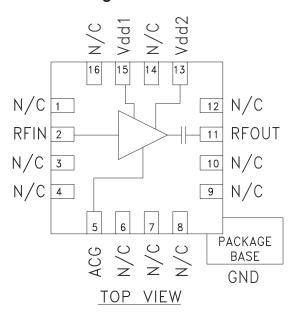
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HMC375LP3 / 375LP3E

v03.0610


GaAs PHEMT MMIC LOW NOISE AMPLIFIER, 1.7 - 2.2 GHz

Typical Applications

The HMC375LP3 / HMC375LP3E is ideal for basestation receivers:

- GSM, GPRS & EDGE
- CDMA & W-CDMA
- DECT

Functional Diagram

Features

Noise Figure: 0.9 dB Output IP3: +34 dBm

Gain: 17 dB

Very Stable Gain vs. Supply & Temperature

Single Supply: +5V @ 136 mA 50 Ohm Matched Output

General Description

The HMC375LP3 & HMC375LP3E high dynamic range GaAs PHEMT MMIC Low Noise Amplifiers are ideal for GSM & CDMA cellular basestation front-end receivers operating between 1.7 and 2.2 GHz. This LNA has been optimized to provide 0.9 dB noise figure, 17 dB gain and +33 dBm output IP3 from a single supply of +5V @ 136mA. Input and output return losses are 14 dB typical with the LNA requiring minimal external components to optimize the RF input match, RF ground and DC bias. For applications which require improved noise figure, please see the HMC618LP3(E).

Electrical Specifications, $T_A = +25^{\circ}$ C, Vs = +5V

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range	1.8 - 1.9		1.9 - 2.0		2.0 - 2.1		2.1 - 2.2		GHz				
Gain	16.5	18.5		15.5	17.5		15	17		13	15		dB
Gain Variation Over Temperature		0.014	0.021		0.014	0.021		0.014	0.021		0.014	0.021	dB/°C
Noise Figure		1.0	1.35		0.95	1.2		0.9	1.2		0.9	1.3	dB
Input Return Loss		12			13			14			15		dB
Output Return Loss		13			16			11			8		dB
Reverse Isolation		35			34			34			34		dB
Output Power for 1dB Compression (P1dB)	16	18.5		16	18.5		15	18		14.5	17.5		dBm
Saturated Output Power (Psat)		19.5			19.5			19.5			19.5		dBm
Output Third Order Intercept (IP3) (-20 dBm Input Power per tone, 1 MHz tone spacing)		34			33.5			33			32.5		dBm
Supply Current (Idd)		136			136			136			136		mA

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC375* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖳

View a parametric search of comparable parts.

EVALUATION KITS

• HMC375LP3 Evaluation Board

DOCUMENTATION

Application Notes

- AN-1363: Meeting Biasing Requirements of Externally Biased RF/Microwave Amplifiers with Active Bias Controllers
- Broadband Biasing of Amplifiers General Application Note
- MMIC Amplifier Biasing Procedure Application Note
- Thermal Management for Surface Mount Components General Application Note

Data Sheet

HMC375 Data Sheet

TOOLS AND SIMULATIONS

HMC375 S-Parameter

REFERENCE MATERIALS 🖵

Quality Documentation

- Package/Assembly Qualification Test Report: 16L 3x3mm QFN Package (QTR: 11003 REV: 02)
- Package/Assembly Qualification Test Report: LP2, LP2C, LP3, LP3B, LP3C, LP3D, LP3F, LP3G (QTR: 2014-0364)
- Package/Assembly Qualification Test Report: Plastic Encapsulated QFN (QTR: 05006 REV: 02)
- Semiconductor Qualification Test Report: PHEMT-B (QTR: 2013-00233)

Technical Articles

• Active Multipliers & Dividers to Simplify Synthesizers

DESIGN RESOURCES 🖳

- HMC375 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- · Symbols and Footprints

DISCUSSIONS

View all HMC375 EngineerZone Discussions.

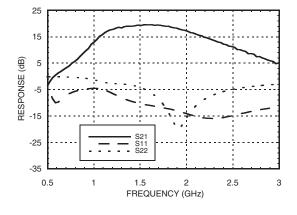
SAMPLE AND BUY 🖳

Visit the product page to see pricing options.

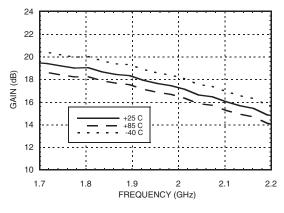
TECHNICAL SUPPORT 🖳

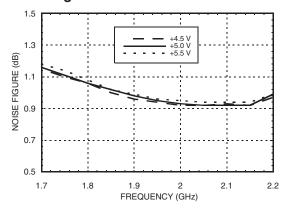
Submit a technical question or find your regional support number.

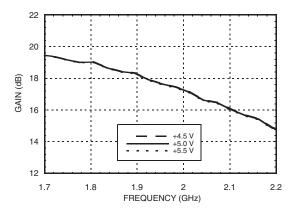
DOCUMENT FEEDBACK 🖳

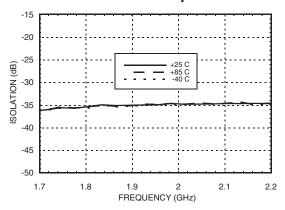

Submit feedback for this data sheet.

GaAs PHEMT MMIC LOW NOISE AMPLIFIER, 1.7 - 2.2 GHz


Broadband Gain & Return Loss

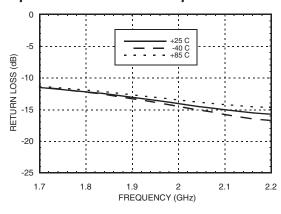

Noise Figure vs. Temperature

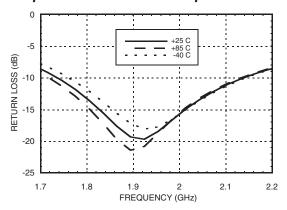

Gain vs. Temperature


Noise Figure vs. Vdd

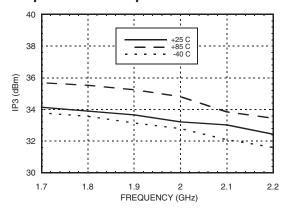
Gain vs. Vdd

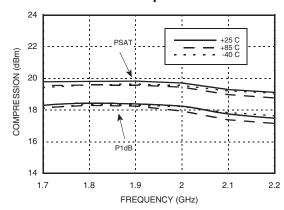
Reverse Isolation vs. Temperature

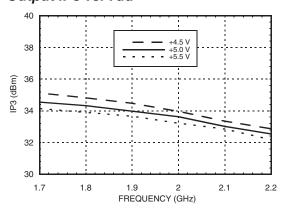


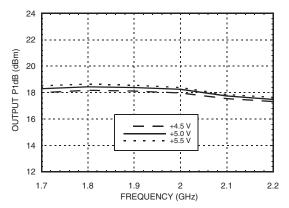


GaAs PHEMT MMIC LOW NOISE AMPLIFIER, 1.7 - 2.2 GHz


Input Return Loss vs. Temperature


Output Return Loss vs. Temperature


Output IP3 vs. Temperature


P1dB & PSAT vs. Temperature

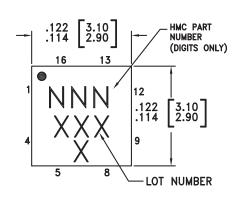
Output IP3 vs. Vdd

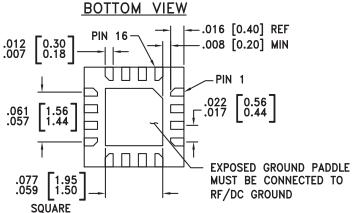
P1dB vs. Vdd

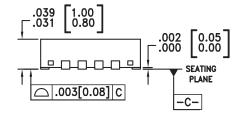
GaAs PHEMT MMIC LOW NOISE AMPLIFIER, 1.7 - 2.2 GHz

Absolute Maximum Ratings

Drain Bias Voltage (Vdd1, Vdd2)	+8.0 Vdc		
RF Input Power (RFIN)(Vs = +5.0 Vdc)	+10 dBm		
Channel Temperature	150 °C		
Continuous Pdiss (T = 85 °C) (derate 15.6 mW/°C above 85 °C)	1.015 W		
Thermal Resistance (channel to ground paddle)	64.1 °C/W		
Storage Temperature	-65 to +150 °C		
Operating Temperature	-40 to +85 °C		


Typical Supply Current vs. Vdd


Idd (mA)		
135		
136		
137		



ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

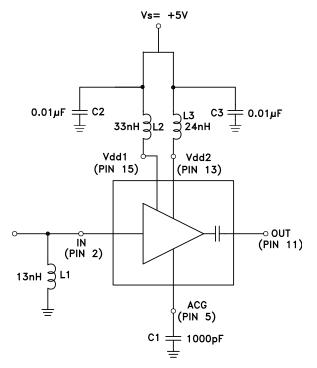
NOTES

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]	
HMC375LP3	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	375 XXXX	
HMC375LP3E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	<u>375</u> XXXX	

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 $^{\circ}\text{C}$
- [3] 4-Digit lot number XXXX

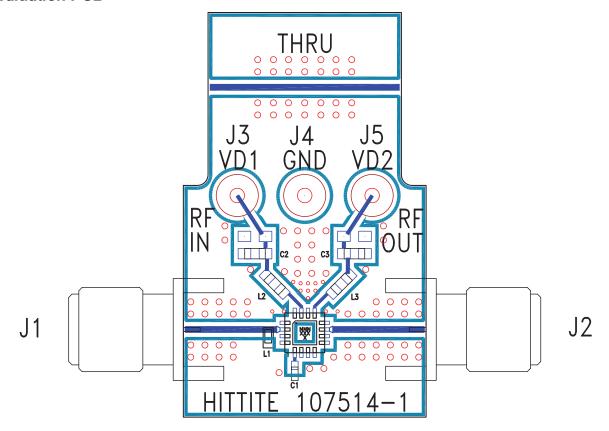


GaAs PHEMT MMIC LOW NOISE AMPLIFIER, 1.7 - 2.2 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic		
1, 3, 4, 6-10, 12, 14, 16	N/C	No connection necessary. These pins may be connected to RF/DC ground.			
2	RFIN	This pin is matched to 50 Ohms with a 13 nH inductor to ground. See Application Circuit.	RFIN ○		
5	ACG	AC Ground - An external capacitor of 0.01μF to ground is required for low frequency bypassing. See Application Circuit for further details.	ACG O		
11	RFOUT	This pin is AC coupled and matched to 50 Ohms.	— —○ RFOUT		
13,15	Vdd2, Vdd1	Power supply voltage. Choke inductor and bypass capacitor are required. See application circuit.	ACG O		
	GND	Package bottom must be connected to RF/DC ground.	GND		

Application Circuit


Note: L1, L2, L3 and C1 should be located as close to pins as possible.

GaAs PHEMT MMIC LOW NOISE AMPLIFIER, 1.7 - 2.2 GHz

Evaluation PCB

List of Materials for Evaluation PCB 107726 [1]

Item	Description		
J1 - J2	PCB Mount SMA RF Connector		
J3 - J4	DC Pin		
C1	1000 pF Capacitor, 0402 Pkg.		
C2, C3	10000 pF Capacitor, 0603 Pkg.		
L1	13nH Inductor, 0402 Pkg.		
L2	33nH Inductor, 0603 Pkg.		
L3	24nH Inductor, 0402 Pkg.		
U1	HMC375LP3 / HMC375LP3E Amplifier		
PCB [2]	107514 Evaluation PCB		

^[1] Reference this number when ordering complete evaluation $\ensuremath{\mathsf{PCB}}$

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350