

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

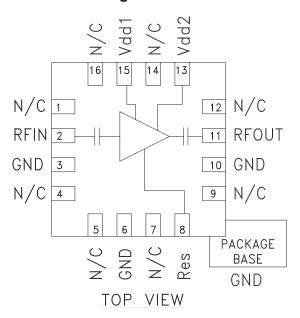
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HMC382LP3 / 382LP3E

v01.0610


GaAs PHEMT MMIC LOW NOISE AMPLIFIER, 1.7 - 2.2 GHz

Typical Applications

The HMC382LP3 / HMC382LP3E is ideal for:

- · Cellular/3G Infrastructure
- · Base Stations & Repeaters
- CDMA, W-CDMA, & TD-SCDMA
- GSM/GPRS & EDGE

Functional Diagram

Features

Noise Figure: 1 dB Output IP3: +30 dBm

Gain: 17 dB

Externally Adjustable Supply Current

Single Positive Supply: +5V 50 Ohm Matched Input/Output

General Description

The HMC382LP3 & HMC382LP3E high dynamic range GaAs PHEMT MMIC Low Noise Amplifiers are ideal for GSM & CDMA cellular basestation front-end receivers operating between 1.7 and 2.2 GHz. This LNA has been optimized to provide 1.0 dB noise figure, 17 dB gain and +30 dBm output IP3 from a single supply of +5V. The HMC382LP3 & HMC382LP3E feature an externally adjustable supply current which allows the designer to tailor the linearity performance of the LNA for each application. For applications which require improved noise figure, please see the HMC618LP3(E).

Electrical Specifications, $T_{\Delta} = +25^{\circ}$ C, Vdd1, Vdd2 = +5V, $Rbias = 16 Ohms^*$

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range	1.7 - 1.9		1.9 - 2.0		2.0 - 2.1		2.1 - 2.2		GHz				
Gain	14	17		12	15		11	14		9	12		dB
Gain Variation Over Temperature		0.01	0.015		0.01	0.015		0.01	0.015		0.01	0.015	dB/°C
Noise Figure		1.0	1.3		1.05	1.35		1.15	1.45		1.2	1.5	dB
Input Return Loss		13			12			11			10		dB
Output Return Loss		10			13			12			9		dB
Reverse Isolation		37			36			35			35		dB
Output Power for 1dB Compression (P1dB)		16			16			15.5			14		dBm
Output Third Order Intercept (IP3) (-20 dBm Input Power per tone, 1 MHz tone spacing)		29.5			30			30			29.5		dBm
Supply Current (ldd1 + ldd2)		67			67			67			67		mA

^{*} Rbias resistor value sets current. See application circuit herein.

HMC382* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖳

View a parametric search of comparable parts.

EVALUATION KITS

• HMC382LP3 Evaluation Board

DOCUMENTATION

Application Notes

- AN-1363: Meeting Biasing Requirements of Externally Biased RF/Microwave Amplifiers with Active Bias Controllers
- Broadband Biasing of Amplifiers General Application Note
- MMIC Amplifier Biasing Procedure Application Note
- Thermal Management for Surface Mount Components General Application Note

Data Sheet

HMC382 Data Sheet

TOOLS AND SIMULATIONS 🖵

HMC382 S-Parameter

REFERENCE MATERIALS 🖳

Quality Documentation

- Package/Assembly Qualification Test Report: 16L 3x3mm QFN Package (QTR: 11003 REV: 02)
- Package/Assembly Qualification Test Report: LP2, LP2C, LP3, LP3B, LP3C, LP3D, LP3F, LP3G (QTR: 2014-0364)
- Package/Assembly Qualification Test Report: Plastic Encapsulated QFN (QTR: 05006 REV: 02)
- Semiconductor Qualification Test Report: PHEMT-B (QTR: 2013-00233)

DESIGN RESOURCES

- · HMC382 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- · Symbols and Footprints

DISCUSSIONS

View all HMC382 EngineerZone Discussions.

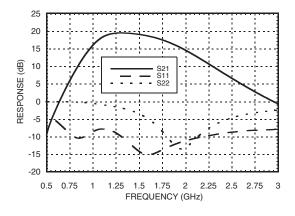
SAMPLE AND BUY 🖳

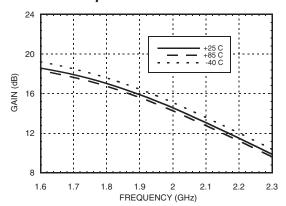
Visit the product page to see pricing options.

TECHNICAL SUPPORT 🖳

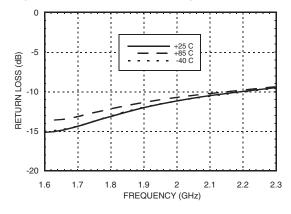
Submit a technical question or find your regional support number.

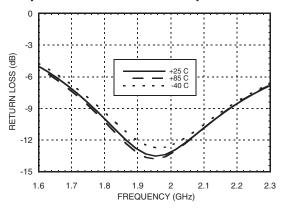
DOCUMENT FEEDBACK 🖳

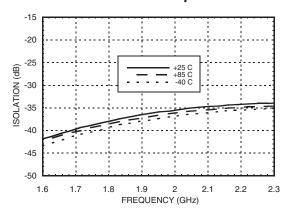

Submit feedback for this data sheet.

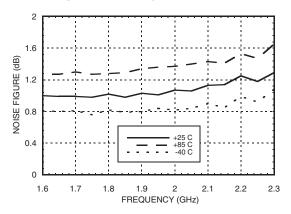


GaAs PHEMT MMIC LOW NOISE AMPLIFIER, 1.7 - 2.2 GHz


Broadband Gain & Return Loss

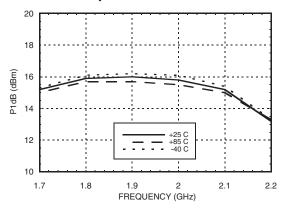

Gain vs. Temperature

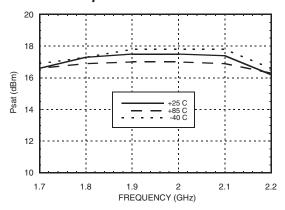

Input Return Loss vs. Temperature


Output Return Loss vs. Temperature

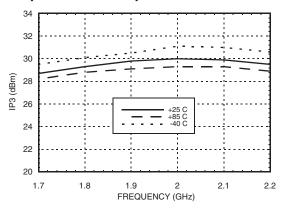
Reverse Isolation vs. Temperature

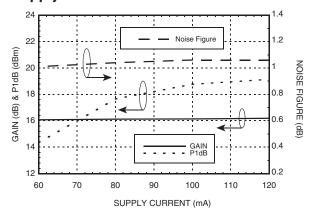
Noise Figure vs. Temperature





GaAs PHEMT MMIC LOW NOISE AMPLIFIER, 1.7 - 2.2 GHz


P1dB vs. Temperature @ Idd = 67 mA


Psat vs. Temperature @ Idd = 67 mA

Output IP3 vs. Temperature Idd = @ 67 mA

Gain, Noise Figure & P1dB vs. Supply Current @ 1900 MHz

Absolute Maximum Ratings

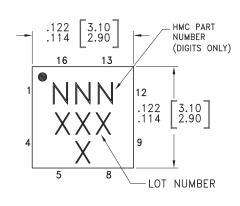
Drain Bias Voltage (Vdd1, Vdd2)	+8.0 Vdc
RF Input Power (RFIN)(Vs = +5.0 Vdc)	+10 dBm
Channel Temperature	150 °C
Continuous Pdiss (T = 85 °C) (derate 6.94 mW/°C above 85 °C)	0.451 W
Thermal Resistance (channel to ground paddle)	144 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

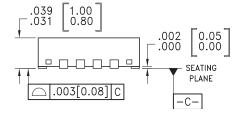
ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Typical Supply Current vs. Vdd1 & Vdd2

Vdd (Vdc)	ldd (mA)
+4.5	67.2
+5.0	67.4
+5.5	67.6

Recommended Bias Resistor Values for Various Idd1 & Idd2


ldd1 + ldd2 (mA)	Rbias (Ohms)
60	27
70	16
80	13
100	8.2
120	3.9



GaAs PHEMT MMIC LOW NOISE AMPLIFIER, 1.7 - 2.2 GHz

Outline Drawing

BOTTOM VIEW O12 0.30 PIN 16 .008 [0.40] REF .007 0.18 .008 [0.20] MIN .061 1.56 .057 1.56 .057 [1.95] .059 [1.50] .059 SQUARE

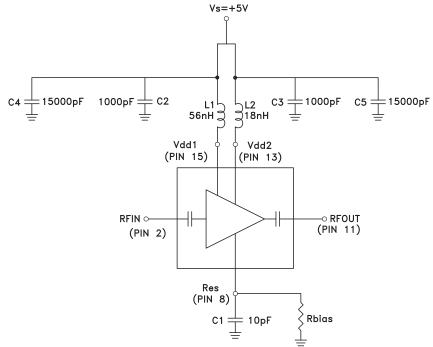
NOTES

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- $5. \ \ \mathsf{PACKAGE} \ \mathsf{WARP} \ \mathsf{SHALL} \ \mathsf{NOT} \ \mathsf{EXCEED} \ \mathsf{0.05mm}.$
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]	
HMC382LP3	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	382 XXXX	
HMC382LP3E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	<u>382</u> XXXX	

- [1] Max peak reflow temperature of 235 $^{\circ}\text{C}$
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

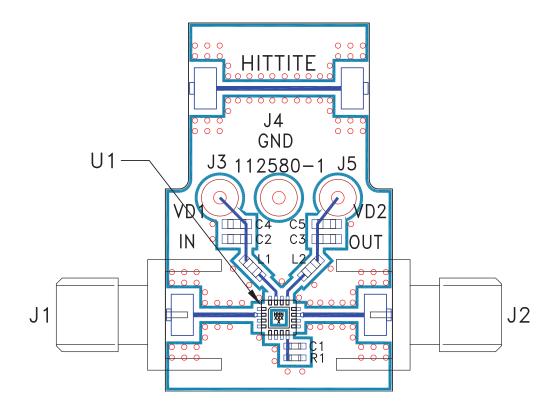


GaAs PHEMT MMIC LOW NOISE AMPLIFIER, 1.7 - 2.2 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 4, 5, 7, 9, 12, 14, 16	N/C	No connection necessary. These pins may be connected to RF/DC ground. Performance will not be affected.	
2	RFIN	This pin is AC coupled and matched to 50 Ohms.	RFIN O——
3, 6, 10	GND	These pins and package bottom must be connected to RF/DC ground.	GND
8	Res	This pin is used to set the DC current of the amplifier by selection of external bias resistor. See application circuit.	Res
11	RFOUT	This pin is AC coupled and matched to 50 Ohms.	— —○ RFOUT
13,15	Vdd2, Vdd1	Power supply voltage. Choke inductor and bypass capacitors are required. See application circuit.	○ Vdd2,Vdd1

Application Circuit


Note: L1, L2 and C1 should be located as close to pins as possible.

GaAs PHEMT MMIC LOW NOISE AMPLIFIER, 1.7 - 2.2 GHz

Evaluation PCB

List of Materials for Evaluation PCB 112582 [1]

Item	Description	
J1 - J2	PCB Mount SMA RF Connector	
J3 - J5	DC Pin	
C1	10 pF Capacitor, 0402 Pkg.	
C2, C3	1000 pF Capacitor, 0603 Pkg.	
C4, C5	15000 pF Capacitor, 0603 Pkg.	
L1	56nH Inductor, 0603 Pkg.	
L2	18nH Inductor, 0603 Pkg.	
R1	Resistor, 0402 Pkg.	
U1	HMC382LP3 / HMC382LP3E Amplifier	
PCB [2]	112580 Evaluation PCB	

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed ground paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350