

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HMC389LP4 / 389LP4E

v03.0507

MMIC VCO w/ BUFFER AMPLIFIER, 3.35 - 3.55 GHz

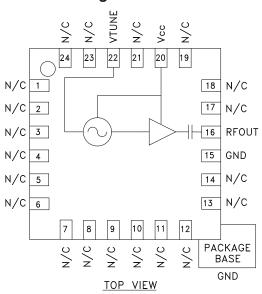
Typical Applications

Low noise MMIC VCO w/Buffer Amplifier for:

- Wireless Local Loop (WLL)
- VSAT & Microwave Radio
- Test Equipment & Industrial Controls
- Military

Features

Pout: +4.7 dBm


Phase Noise: -112 dBc/Hz @100 KHz

No External Resonator Needed

Single Supply: 3V @ 41 mA

QFN Leadless SMT Package, 16 mm²

Functional Diagram

General Description

The HMC389LP4 & HMC389LP4E are GaAs InGaP Heterojunction Bipolar Transistor (HBT) MMIC VCOs with integrated resonators, negative resistance devices, varactor diodes, and buffer amplifiers. Covering 3.35 to 3.55 GHz, the VCO's phase noise performance is excellent over temperature, shock, vibration and process due to the oscillator's monolithic structure. Power output is 4.7 dBm typical from a single supply of 3V @ 41mA. The voltage controlled oscillator is packaged in a low cost leadless QFN 4x4 mm surface mount package.

Electrical Specifications, $T_A = +25^{\circ}$ C, Vcc = +3V

Parameter	Min.	Тур.	Max.	Units
Frequency Range	ency Range 3.35 - 3.55		GHz	
Power Output	1.5	4.7		dBm
SSB Phase Noise @ 100 kHz Offset, Vtune= +5V @ RF Output		-112		dBc/Hz
Tune Voltage (Vtune)	0		10	V
Supply Current (Icc) (Vcc = +3.0V)		41		mA
Tune Port Leakage Current			10	μΑ
Output Return Loss		6		dB
Harmonics 2nd 3rd		-7 -16		dBc dBc
Pulling (into a 2.0:1 VSWR)		3.3		MHz pp
Pushing @ Vtune= +5V		-3		MHz/V
Frequency Drift Rate		0.4		MHz/°C

HMC389* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖳

View a parametric search of comparable parts.

EVALUATION KITS

• HMC389LP4 Evaluation Board

DOCUMENTATION

Application Notes

 Determining the FM Bandwidth of a Wideband Varactor Tuned VCO

Data Sheet

· HMC389 Data Sheet

REFERENCE MATERIALS 🖳

Quality Documentation

- Package/Assembly Qualification Test Report: LP4, LP4B, LP4C, LP4K (QTR: 2013-00487 REV: 04)
- Package/Assembly Qualification Test Report: Plastic Encapsulated QFN (QTR: 05006 REV: 02)
- Semiconductor Qualification Test Report: GaAs HBT-A (QTR: 2013-00228)

DESIGN RESOURCES 🖵

- HMC389 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC389 EngineerZone Discussions.

SAMPLE AND BUY 🖵

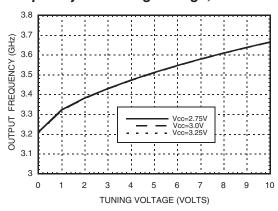
Visit the product page to see pricing options.

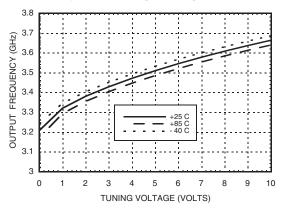
TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

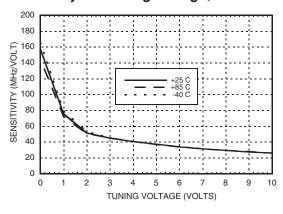
DOCUMENT FEEDBACK 🖳

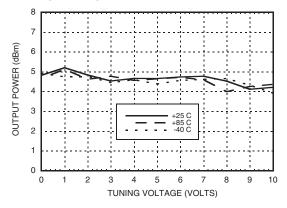
Submit feedback for this data sheet.

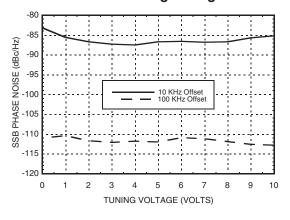

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

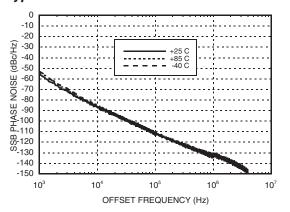


MMIC VCO w/ BUFFER AMPLIFIER, 3.35 - 3.55 GHz


Frequency vs. Tuning Voltage, T= 25°C


Frequency vs. Tuning Voltage, Vcc= +3V


Sensitivity vs. Tuning Voltage, Vcc= +3V


Output Power vs. Tuning Voltage, Vcc= +3V

Phase Noise vs. Tuning Voltage

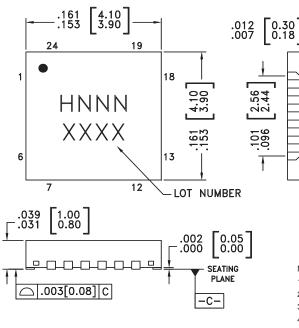
Typical SSB Phase Noise @ Vtune= +5V

MMIC VCO w/ BUFFER AMPLIFIER, 3.35 - 3.55 GHz

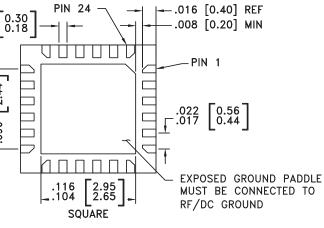
Absolute Maximum Ratings

Vcc	+3.5 Vdc	
Vtune	0 to +11V	
Channel Temperature	135 °C	
Continuous Pdiss (T = 85°C) (derate 6.28 mW/°C above 85°C)	565 W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	
ESD Sensitivity (HBM)	Class 1A	

Typical Supply Current vs. Vcc


Vcc (V)	Icc (mA)	
2.75	35	
3.0	41	
3.25	46	

Note: VCO will operate over full voltage range shown above.



ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

BOTTOM VIEW

NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM.
 PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOT FOR SUGGESTED LAND PATTERN.

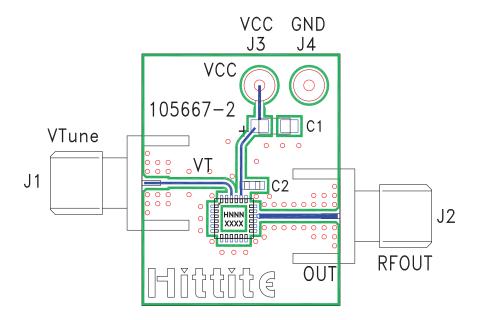
Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC389LP4	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H389 XXXX
HMC389LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	H389 XXXX

- [1] Max peak reflow temperature of 235 $^{\circ}\text{C}$
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

MMIC VCO w/ BUFFER AMPLIFIER, 3.35 - 3.55 GHz

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1- 14, 17 - 19, 21, 23, 24	N/C	No Connection	
15	GND	This pin must be connected to RF & DC ground.	O GND =
16	RFOUT	RF output (AC coupled)	— —○ RFOUT
20	Vcc	Supply Voltage Vcc= 3V	Vcc O26pF
22	VTUNE	Control Voltage Input. Modulation port bandwidth dependent on drive source impedance.	7.5nH 1500 VTUNEO 1500 2.4pF 2 10pF
	GND	Package bottom has an exposed metal paddle that must be RF & DC grounded.	○ GND =

MMIC VCO w/ BUFFER AMPLIFIER, 3.35 - 3.55 GHz

Evaluation PCB

List of Materials for Evaluation PCB 105706 [1]

Item	Description	
J1 - J2	PCB Mount SMA RF Connector	
J3 - J4	DC Pin	
C1	4.7 μF Tantalum Capacitor	
C2	10,000 pF Capacitor, 0603 Pkg.	
U1	HMC389LP4 / HMC389LP4E VCO	
PCB [2]	105667 Eval Board	

^[1] Reference this number when ordering complete evaluation PCB $\,$

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350

v02.0805

Notes:

MMIC VCO w/ BUFFER AMPLIFIER, 3.35 - 3.55 GHz