mail

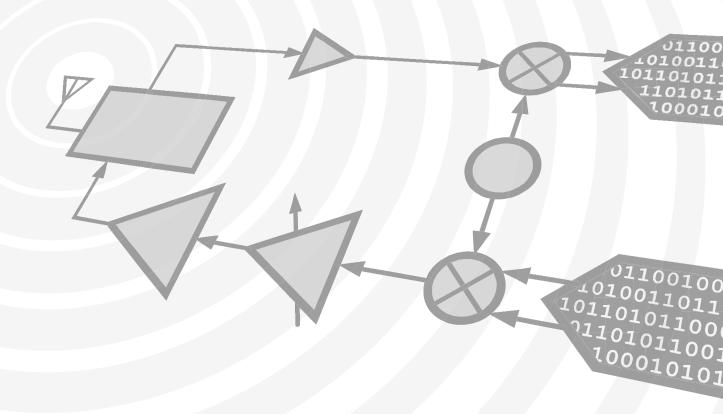
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Analog Devices Welcomes Hittite Microwave Corporation

NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

www.hittite.com

www.analog.com

HMC398* Product Page Quick Links

Last Content Update: 11/01/2016

Comparable Parts

View a parametric search of comparable parts

Evaluation Kits

• HMC398QS16G Evaluation Board

Documentation 🖵

Data Sheet

• HMC398 Data Sheet

Reference Materials

Quality Documentation

- HMC Legacy PCN: QS##, QS##E and QS##G,QS##GE packages Relocation of pre-existing production equipment to new building
- Package/Assembly Qualification Test Report: Plastic Encapsulated QSOP (QTR: 02015 REV: 11)
- Semiconductor Qualification Test Report: GaAs HBT-A (QTR: 2013-00228)

Technical Articles

Low Cost Plastic MMIC VCOs

Design Resources 🖵

- HMC398 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

Discussions 🖵

View all HMC398 EngineerZone Discussions

Sample and Buy

Visit the product page to see pricing options

Technical Support

Submit a technical question or find your regional support number

^{*} This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to the content on this page does not constitute a change to the revision number of the product data sheet. This content may be frequently modified.

THIS PAGE INTENTIONALLY LEFT BLANK

KU-BAND MMIC VCO WITH DIVIDE-BY-8 14 - 15 GHz

Typical Applications

Low noise MMIC VCO w/Divide-by-8 for Ku-Band applications such as:

- Point-to-Point Radios
- Point-to-Multi-Point Radios / LMDS
- VSAT

Functional Diagram

Features

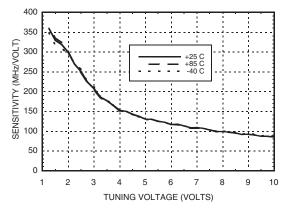
Pout: +7 dBm Phase Noise: -105 dBc/Hz @100 kHz Typ. No External Resonator Needed Single Supply: 5V @ 325 mA QSOP16G SMT Package

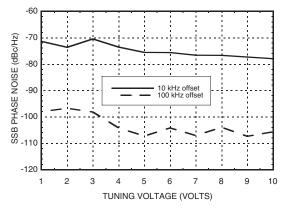
General Description

The HMC398QS16G & HMC398QS16GE are single chip GaAs InGaP Heterojunction Bipolar Transistor (HBT) MMIC VCOs. The HMC398QS16G & HMC398QS16GE integrate resonators, negative resistance devices, varactor diodes and divide-by-8 prescalers. The VCO's phase noise performance is excellent over temperature, shock, and process due to the oscillator's monolithic structure. Power output is +7 dBm typical from a 5V supply voltage. The voltage controlled oscillator is packaged in a low cost, surface mount 16 leaded QSOP package with an exposed base for improved RF and thermal performance. The HMC398QS16G & HMC398QS16GE require no external components

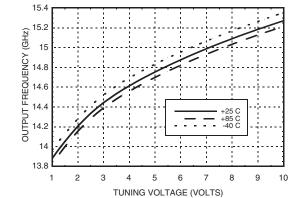
Electrical Specifications, $T_A = +25^{\circ}$ C, Vcc1, Vcc2 = +5.0V

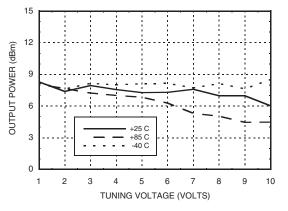
Parameter		Min.	Тур.	Max.	Units
Frequency Range			14.0 - 15.0		GHz
Power Output	RF Output Divided Output	+3 -9	+7 -6		dBm dBm
SSB Phase Noise @ 100 kHz Offset, Vtune= +5V @ RF Output			-105		dBc/Hz
Tune Voltage	Vtune	1.0		10.0	V
Supply Current	Icc 1 (Digital) Icc 2 (RF)		65 260		mA mA
Tune Port Leakage Current (Vtune= 10V)				10	μA
Output Return Loss			2		dB
Harmonics/Subharmonics	1/2 3/2 2nd 5/2		-20 -30 -12 -40		dBc dBc dBc dBc
Pulling (into a 2.0:1 VSWR)			4		MHz pp
Pushing @ Vtune= 5V			30		MHz/V
Frequency Drift Rate			1.5		MHz/°C

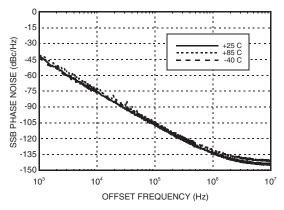



KU-BAND MMIC VCO WITH DIVIDE-BY-8 14 - 15 GHz

Frequency vs. Tuning Voltage, T= 25°C 15.4 15.2 15 15 14.8 14.8 14.6 14.6 14.4 14.2 Vcc = 4.75VVcc= 5.0V Vcc= 5.25V 14 13.8 9 2 3 4 5 6 8 10 1 TUNING VOLTAGE (VOLTS)


Sensitivity vs. Tuning Voltage, Vcc= +5V

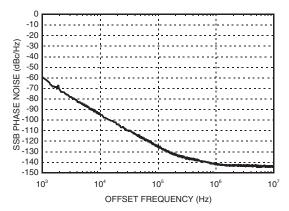

SSB Phase Noise vs. Tuning Voltage



Output Power vs. Tuning Voltage, Vcc= +5V

SSB Phase Noise @ Vtune= 5V

VCOS - SMT



KU-BAND MMIC VCO WITH DIVIDE-BY-8 14 - 15 GHz

Divided Output SSB Phase Noise @ Vtune = 5V

Absolute Maximum Ratings

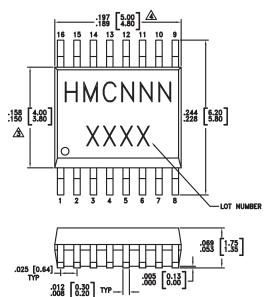
Vcc1, Vcc2	+5.5
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
Vtune	0 to 11V

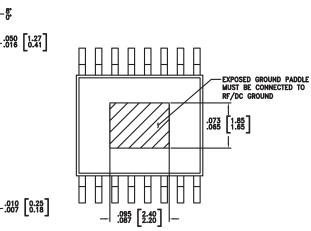
ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Typical Supply Current vs. Vcc

Vcc (V)	Icc (mA)
4.75	300
5.0	325
5.25	350

Note: VCO will operate over full voltage range shown above.


*Note: Tuning voltage must not drop below 1.0V for proper divider output.



KU-BAND MMIC VCO WITH DIVIDE-BY-8 14 - 15 GHz

Outline Drawing

NOTES:

8.

1. LEADFRAME MATERIAL: COPPER ALLOY

2. DIMENSIONS ARE IN INCHES [MILLIMETERS]

- A DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- A DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 5. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC398QS16G	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 ^[1]	HMC398 XXXX
HMC398QS16GE RoHS-compliant Low Stress Injection Molded Plastic		100% matte Sn	MSL1 ^[2]	HMC398 XXXX

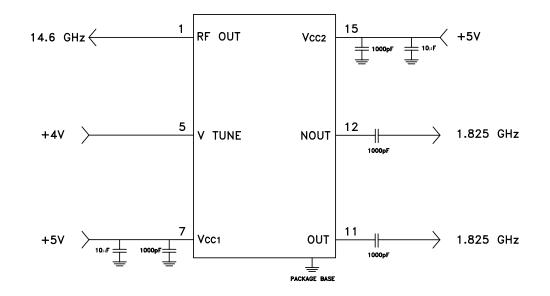
[1] Max peak reflow temperature of 235 °C

[2] Max peak reflow temperature of 260 °C

[3] 4-Digit lot number XXXX

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	RFOUT	RF output (AC coupled).	
2, 3, 4, 6, 8, 9, 10, 13, 14, 16	N/C	No Connection	
5	VTUNE	Control Voltage Input. Modulation port bandwidth dependent on drive source impedance.	VTUNEO 2.4pF 2

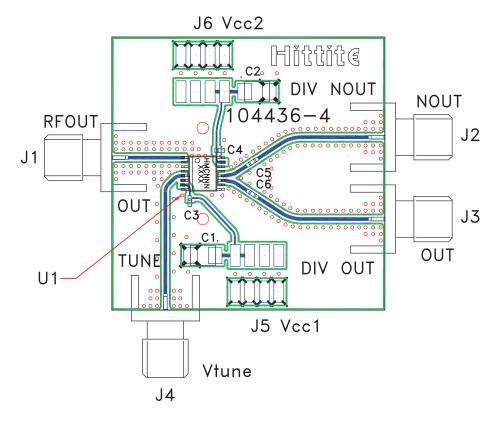


KU-BAND MMIC VCO WITH DIVIDE-BY-8 14 - 15 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
7, 15	VCC1, VCC2	Supply Voltage, 5V	Vcco
11	OUT	Divided Output	5V O OUT
12	NOUT	Divided Output 180° output phase with pin 11.	5V ONOUT
	GND	Package bottom has an exposed metal paddle that must be RF & DC grounded.	

Typical Application Circuit



ROHS

KU-BAND MMIC VCO WITH DIVIDE-BY-8 14 - 15 GHz

Evaluation PCB

List of Materials for Evaluation PCB 104711 [1]

Item	Description
J1 - J4	PCB Mount SMA RF Connector
J5 - J6	2 mm DC Header
C1 - C2	10 µF Tantalum Capacitor
C3 - C6	1,000 pF Capacitor 0402 Pkg.
U1	HMC398QS16G / HMC398QS16GE VCO
PCB [2]	104436 Eval Board

Reference this number when ordering complete evaluation PCB
Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and backside ground slug should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.