

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

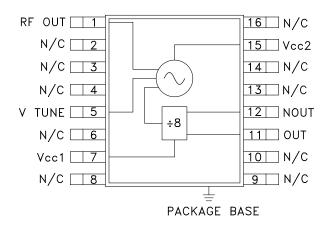
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

v03.0810


KU-BAND MMIC VCO WITH DIVIDE-BY-8 13.2 - 13.5 GHz

Typical Applications

Low noise MMIC VCO w/Divide-by-8 for Ku-Band applications such as:

- Point-to-Point Radios
- Point-to-Multi-Point Radios / LMDS
- VSAT

Functional Diagram

Features

Pout: -7 dBm

Phase Noise: -105 dBc/Hz @100 KHz Typ.

No External Resonator Needed Single Supply: 5V @ 290 mA QSOP16G SMT Package

General Description

The HMC401QS16G & HMC401QS16GE are GaAs InGaP Heterojunction Bipolar Transistor (HBT) MMIC VCOs. The HMC401QS16G & HMC401QS16GE integrate resonators, negative resistance devices, varactor diodes and divide-by-8 prescalers. The VCO's phase noise performance is excellent over temperature, shock, and process due to the oscillator's monolithic structure. Power output is -7 dBm typical from a 5V supply voltage. The voltage controlled oscillator is packaged in a low cost, surface mount 16 leaded QSOP package with an exposed base for improved RF and thermal performance.

Electrical Specifications, $T_A = +25^{\circ}$ C, Vcc1, Vcc2 = +5V

Parameter		Min.	Тур.	Max.	Units
Frequency Range			13.2 - 13.5		GHz
Power Output	FR Output Divided Output	-10 -9	-7 -6		dBm dBm
SSB Phase Noise @ 100 kHz Offset, Vtune= +5V @ RF Output			-105		dBc/Hz
Tune Voltage	Vtune	0		10	V
Supply Current	Icc1 (Digital) Icc2 (RF)		65 225		mA mA
Tune Port Leakage Current (Vtune= 10V)				10	μΑ
Output Return Loss			2		dB
Harmonics/Subharmonics	1/2 3/2 2nd 5/2		-7 -28 -17 -40		dBc dBc dBc dBc
Pulling (into a 2.0:1 VSWR)			0.6		MHz pp
Pushing @ Vtune= 5V			5		MHz/V
Frequency Drift Rate			1.5		MHz/°C

HMC401* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖵

View a parametric search of comparable parts.

EVALUATION KITS

· HMC401QS16G Evaluation Board

DOCUMENTATION

Data Sheet

• HMC401 Data Sheet

REFERENCE MATERIALS -

Quality Documentation

- HMC Legacy PCN: QS##, QS##E and QS##G,QS##GE packages - Relocation of pre-existing production equipment to new building
- Package/Assembly Qualification Test Report: Plastic Encapsulated QSOP (QTR: 02015 REV: 11)
- Semiconductor Qualification Test Report: GaAs HBT-A (QTR: 2013-00228)

Technical Articles

Low Cost Plastic MMIC VCOs

DESIGN RESOURCES 🖵

- HMC401 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- · Symbols and Footprints

DISCUSSIONS

View all HMC401 EngineerZone Discussions.

SAMPLE AND BUY 🖵

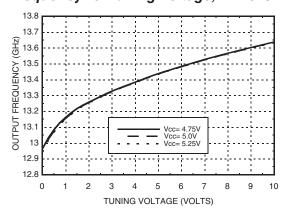
Visit the product page to see pricing options.

TECHNICAL SUPPORT

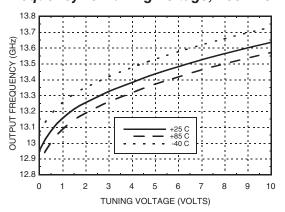
Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK 🖳

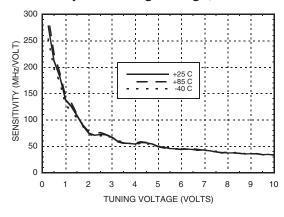
Submit feedback for this data sheet.

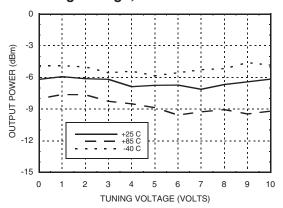


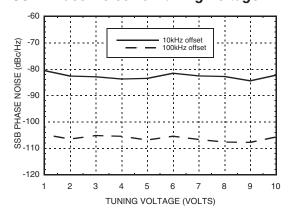
v03.0810

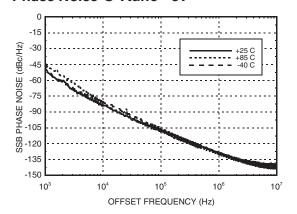


KU-BAND MMIC VCO WITH DIVIDE-BY-8 13.2 - 13.5 GHz


Frequency vs. Tuning Voltage, T= 25°C

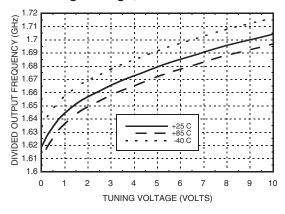

Frequency vs. Tuning Voltage, Vcc= +5V


Sensitivity vs. Tuning Voltage, Vcc= +5V

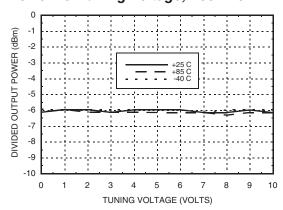

Output Power vs. Tuning Voltage, Vcc= +5V

SSB Phase Noise vs. Tuning Voltage

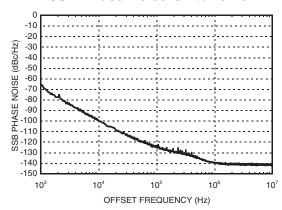
Phase Noise @ Vtune= 5V



v03.0810



KU-BAND MMIC VCO WITH DIVIDE-BY-8 13.2 - 13.5 GHz


Divided Frequency vs. Tuning Voltage, Vcc= +5V

Divided Output Power vs. Tuning Voltage, Vcc= +5V

Divided Output SSB Phase Noise @ Vtune= 5V

Absolute Maximum Ratings

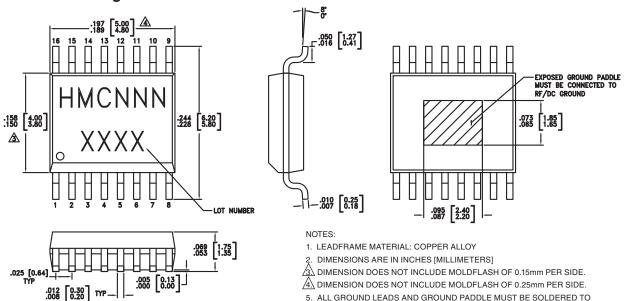
Vcc1, Vcc2	5.5 V
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
Vtune	0 to 11V Max.
ESD Sensitivity (HBM)	Class 1A

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Typical Supply Current vs. Vcc

Vcc (V)	Icc (mA)
4.75	260
5.0	290
5.25	315

Note: VCO will operate over full voltage range shown above.



v03.0810

KU-BAND MMIC VCO WITH DIVIDE-BY-8 13.2 - 13.5 GHz

Outline Drawing

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC401QS16G	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	HMC401 XXXX
HMC401QS16GE	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	HMC401 XXXX

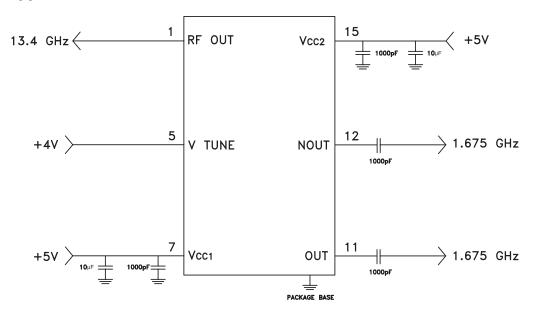
PCB RF GROUND.

- [1] Max peak reflow temperature of 235 $^{\circ}\text{C}$
- [2] Max peak reflow temperature of 260 $^{\circ}\text{C}$
- [3] 4-Digit lot number XXXX

Pin Descriptions

2 000. [4.101.0			
Pin Number	Function	Description	Interface Schematic
1	RFOUT	RF output (AC coupled).	RFOUT
2, 3, 4, 6, 8, 9, 10, 13, 14, 16	N/C	No Connection	
5	VTUNE	Control Voltage Input. Modulation port bandwidth dependent on drive source impedance.	7.5nH VTUNEO 1500 2.4pF 3.6pF

v03.0810

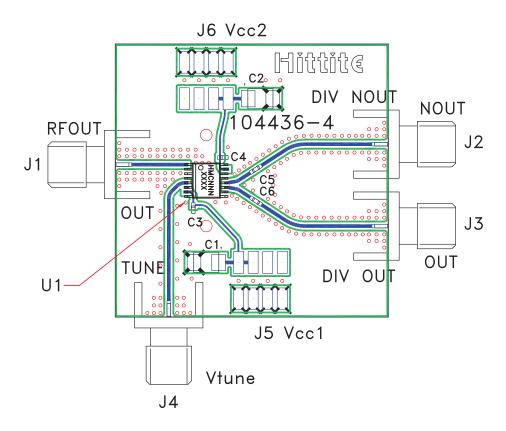


KU-BAND MMIC VCO WITH DIVIDE-BY-8 13.2 - 13.5 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
7, 15	VCC1, VCC2	Supply Voltage, 5V	Vcc O26pF
11	OUT	Divided Output	5V OUT
12	NOUT	Divided Output 180° output phase with pin 11.	5V ONOUT
	GND	Package bottom has an exposed metal paddle that must be RF & DC grounded.	GND =

Typical Application Circuit



v03.0810

KU-BAND MMIC VCO WITH DIVIDE-BY-8 13.2 - 13.5 GHz

Evaluation PCB

List of Materials for Evaluation PCB 104711 [1]

Item	Description
J1 - J4	PCB Mount SMA RF Connector
J5 - J6	2 mm DC Header
C1 - C2	10 μF Tantalum Capacitor
C3 - C6	1,000 pF Capacitor, 0402 Pkg.
U1	HMC401QS16G / HMC401QS16GE VCO
PCB [2]	104436 Eval Board

[1] Reference this number when ordering complete evaluation PCB $\,$

[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and backside ground slug should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.