# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

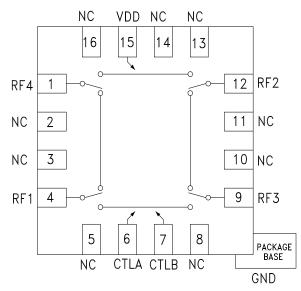


## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China






## GaAs MMIC POSITIVE CONTROL TRANSFER SWITCH, DC\* - 8GHz

#### **Typical Applications**

The HMC427ALP3E is ideal for:

- Test Instrumentation
- Fiber Optics & Broadband Telecom
- Basestation Infrastructure
- Microwave Radio & VSAT
- Military Radios, Radar, & ECM

#### **Functional Diagram**



## General Description

Non-Reflective Design

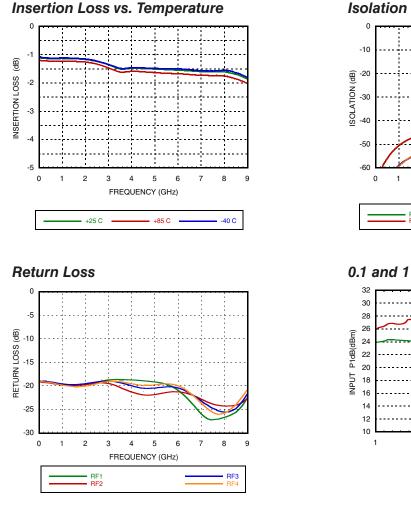
3x3mm SMT Package

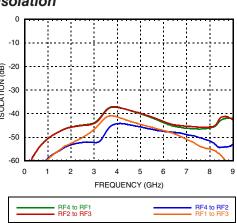
High Isolation: 40 ~ 45 dB thru 6 GHz Low Insertion Loss: 1.5 dB at 6 GHz

Features

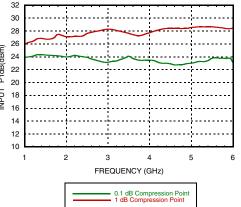
The HMC427ALP3E is a low loss broadband positive control transfer switch in leadless surface mount package. Covering DC to 8 GHz, this switch offers high isolation and low insertion loss. The switch operates using a positive control voltage of 0/+5V and requires a fixed bias of +5V at  $< 20 \ \mu$ A.

\* Blocking capacitors are required at ports RF1, 2, 3, & 4. Their value will determine the lowest transmission frequency.

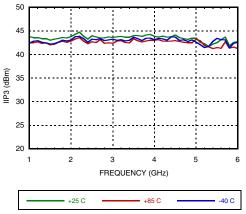

#### Electrical Specifications, $T_{A} = +25^{\circ}$ C, VDD = 5V, With 0/+5V Control, 50 Ohm System


| Parameter                                                                                       | Frequency                                                    | Min.                 | Тур.                 | Max.     | Units                |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------|----------------------|----------|----------------------|
| Insertion Loss                                                                                  | DC - 6.0 GHz<br>DC - 8.0 GHz                                 |                      | 1.5<br>1.8           | 2<br>2.1 | dB<br>dB             |
| Isolation                                                                                       | DC - 1.0 GHz<br>DC - 2.0 GHz<br>DC - 6.0 GHz<br>DC - 8.0 GHz | 45<br>40<br>36<br>35 | 50<br>45<br>43<br>43 |          | dB<br>dB<br>dB<br>dB |
| Return Loss                                                                                     | DC - 6.0 GHz<br>DC - 8.0 GHz                                 |                      | 18<br>18             |          | dB<br>dB             |
| Input Power for 1 dB Compression                                                                | 1.0 - 8.0 GHz                                                | 25                   | 26                   |          | dBm<br>dBm           |
| Input Third Order Intercept<br>(Two-Tone Input Power= +12 dBm Each Tone, 1 MHz Tone Separation) | 1.0 - 8.0 GHz                                                | 40                   | 43                   |          | dBm<br>dBm           |
| Switching Characteristics<br>tRISE, tFALL (10/90% RF)<br>tON, tOFF (50% CTL to 10/90% RF)       | DC - 8.0 GHz                                                 |                      | 2<br>10              |          | ns<br>ns             |

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.




### GaAs MMIC POSITIVE CONTROL TRANSFER SWITCH, DC\* - 8GHz






#### 0.1 and 1 dB Input Compression Point







For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D



### GaAs MMIC POSITIVE CONTROL TRANSFER SWITCH, DC\* - 8GHz

#### Absolute Maximum Ratings

| Bias Voltage Range (VDD)              | +7.0 VDC                |  |
|---------------------------------------|-------------------------|--|
| Control Voltage Range (CTRLA & CTRLB) | -0.5V to VDD +1.0 VDC   |  |
| Channel Temperature                   | 150 °C                  |  |
| Thermal Resistance                    | 130 °C/W                |  |
| Storage Temperature                   | -65 to +150 °C          |  |
| Operating Temperature                 | -40 to +85 °C           |  |
| Maximum Input Power                   | +25.5 dBm (DC - 2 GHz)  |  |
| Maximum input Power                   | +27 dBm (2 GHz - 8 GHz) |  |
| ESD Sensitivity (HBM)                 | Class 1A                |  |
| ESD Sensitivity (FICDM)               | Class IV                |  |



## ELECTROSTATIC SENSITIVE DEVICE

#### Note:

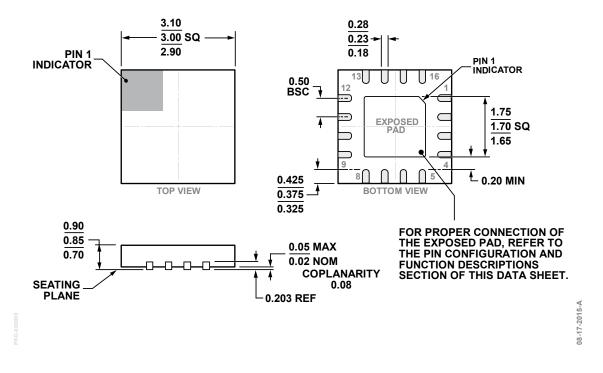
DC blocking capacitors are required at ports RF1, 2, 3, & 4. Their value will determine the lowest transmission frequency.

#### **Bias Voltage & Current**

| VDD Range = +5 VDC ± 10 % |                    |    |  |
|---------------------------|--------------------|----|--|
| VDD<br>(VDC)              | IDD (Max.)<br>(µA) |    |  |
| +5                        | 5                  | 10 |  |

#### **Control Voltages**

| State | Bias Condition                  |  |
|-------|---------------------------------|--|
| Low   | 0 to +0.2 VDC at < 1 µA Typical |  |
| High  | Vdd ± 0.2 VDC at < 1 µA Typical |  |


#### **Truth Table**

| Control Input |      | Signal Path State |               |               |               |
|---------------|------|-------------------|---------------|---------------|---------------|
| А             | В    | RF4 to<br>RF2     | RF1 to<br>RF3 | RF4 to<br>RF1 | RF2 to<br>RF3 |
| Low           | High | On                | On            | Off           | Off           |
| High          | Low  | Off               | Off           | On            | On            |



### GaAs MMIC POSITIVE CONTROL TRANSFER SWITCH, DC\* - 8GHz

#### **Outline Drawing**



#### **Package Information**

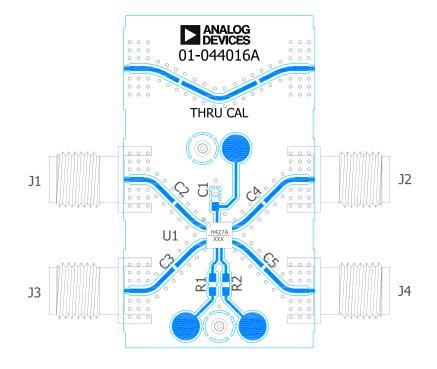
| Part Number | Package Body Material                              | Lead Finish   | MSL Rating          | Package Marking <sup>[2]</sup> |
|-------------|----------------------------------------------------|---------------|---------------------|--------------------------------|
| HMC427ALP3E | RoHS-compliant Low Stress Injection Molded Plastic | 100% matte Sn | MSL3 <sup>[1]</sup> | <u>H427A</u><br>XXXX           |

[1] Max peak reflow temperature of 260 °C

[2] 4-Digit lot number XXXX



### GaAs MMIC POSITIVE CONTROL TRANSFER SWITCH, DC\* - 8GHz


#### **Pin Descriptions**

| Pin Number                           | Function              | Description                                                                        | Interface Schematic |
|--------------------------------------|-----------------------|------------------------------------------------------------------------------------|---------------------|
| 1, 4, 9, 12                          | RF4, RF1, RF3,<br>RF2 | This pin is DC coupled and matched to 50 Ohm.<br>Blocking capacitors are required. |                     |
| 2, 3, 5, 8,<br>10, 11, 13,<br>14, 16 | NC                    | This pin should be connected to PCB RF ground to maximize isolation.               |                     |
|                                      | GND                   | Package bottom has exposed metal paddle that must be connected to PCB RF ground.   |                     |
| 6                                    | CTRLA                 | See truth table and control voltage table.                                         | R                   |
| 7                                    | CTRLB                 | See truth table and control voltage table.                                         |                     |
| 15                                   | VDD                   | Supply Voltage +5V ± 10%.                                                          |                     |



### GaAs MMIC POSITIVE CONTROL TRANSFER SWITCH, DC\* - 8GHz

#### **Evaluation PCB**



#### List of Materials for Evaluation PCB EV1HMC427ALP3E<sup>[1]</sup>

| Item    | Description                    |  |
|---------|--------------------------------|--|
| J1 - J4 | PCB Mount SMA RF Connector     |  |
| J5 - J8 | DC Pin                         |  |
| C1      | 1000 pF Capacitor, 0603 Pkg.   |  |
| C2 - C5 | 100 pF Capacitor, 0402 Pkg.    |  |
| R1 - R2 | 100 Ohm Resistor, 0603 Pkg.    |  |
| U1      | HMC427ALP3E<br>Transfer Switch |  |
| PCB [2] | Evaluation PCB 01-044016A      |  |

Reference this number when ordering complete evaluation PCB
Circuit Board Material: Rogers 4350

#### The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 ohm impedance and the package ground leads and package bottom should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Analog Devices upon request.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D