

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

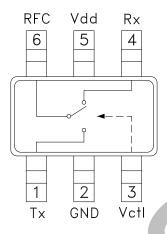
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


GaAs MMIC 10W T/R SWITCH, 824 - 894 MHz*

Typical Applications

The HMC446 / HMC446E is ideal for:

- ISM/Cellular Portables/Handsets
- Automotive Telematic Applications
- Mobile Radio

Functional Diagram

Features

Low Insertion Loss: 0.6 dB

High IIP3: +65 dBm

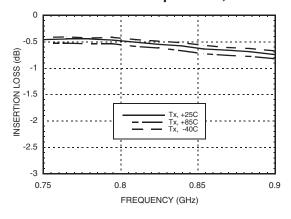
High Input P0.1 dB: +40 dBm Tx Positive Control: 0/+5V to 0/+8V Ultra Small Package: SOT26

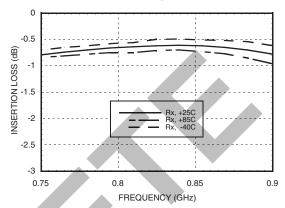
General Description

The HMC446 & HMC446E are low-cost SPDT switches in 6-lead SOT26 packages for use in transmitreceive applications which require very low distortion at high signal power levels, up to 10 watts. The device can control signals from 824 - 894 MHz* and is especially suited for cellular booster and automotive telematic applications. The design provides exceptional P0.1 dB of +40 dBm and +65 dBm IIP3 on the Transmit (Tx) port. The Tx port is a reflective open when "Off" while the Rx port is a reflective short when "Off". On-chip circuitry allows single positive supply operation at very low DC current with a single control input (Vctl).

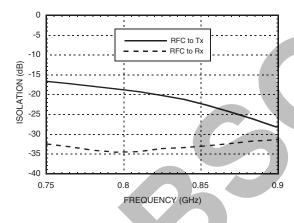
Electrical Specifications, $T_A = +25^{\circ}$ C, Vctl = 0/+8 Vdc, 50 Ohm System

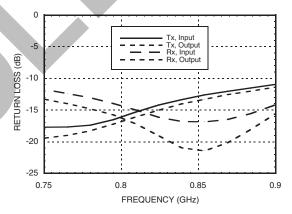
Parameter		Frequency*	Min.	Тур.	Max.	Units
Insertion Loss	Tx - RFC RFC - Rx	824 - 849 MHz 824 - 894 MHz		0.6 0.6	0.9 1.0	dB dB
Isolation	Tx - RFC RFC - Rx	824 - 849 MHz 824 - 894 MHz	18 29	22 35		dB dB
Return Loss	Tx - RFC RFC - Rx	824 - 849 MHz 824 - 894 MHz		13 17		dB dB
Input Power for 0.1 dB Compression	Tx - RFC RFC - Rx	824 - 849 MHz 824 - 894 MHz	38 28	40 30		dBm dBm
Input Third Order Intercept (Two-tone input power = +19 dBm each tone)	Tx - RFC RFC - Rx	824 - 849 MHz 824 - 894 MHz		65 52		dBm dBm
Switching Characteristics		824 - 894 MHz				
tRISE, tFALL (10 tON, tOFF (50% CTL to 10	′			4 90		ns ns

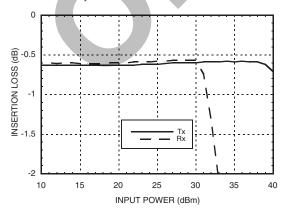

^{*} External component values can be adjusted to enable HMC446 to operate in other frequency bands. Contact HMC with your specific requirement.

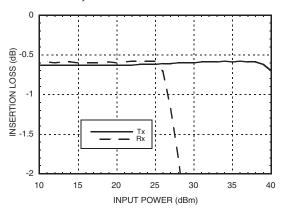


GaAs MMIC 10W T/R SWITCH, 824 - 894 MHz*


Insertion Loss vs. Temperature, Tx


Insertion Loss vs. Temperature, Rx


Isolation


Return Loss

Input Power Compression @ 849 MHz, Vdd = 8.0V

Input Power Compression @ 849 MHz, Vdd = 5.0V

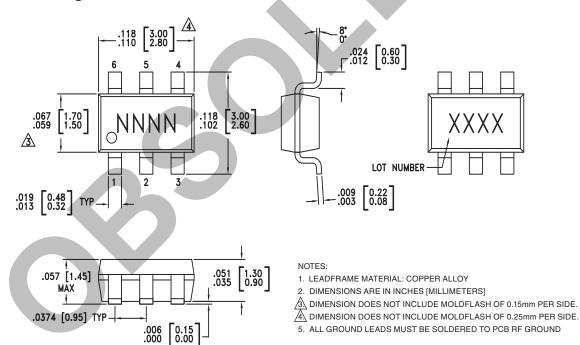
GaAs MMIC 10W T/R SWITCH, 824 - 894 MHz*

Absolute Maximum Ratings

Max. Input Power		41 dBm 33 dBm
Supply Voltage (Vdd)	+10 Vdc	
Control Voltage Range (Vo	-0.2 to Vdd	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	

Do not operate continuously at power levels > 1 dB compression and do not "hot switch" power levels greater than +36 dBm (Vctl= +8V) into the Tx port and no greater than +27 dBm into the Rx port.

Truth Table


Control Input	Signal Path State			
Vctl (Vdc)	Tx to RFC	RFC to Rx		
0.0	OFF	ON		
Vdd	ON	OFF		
Vdd = +5.0V to +8.0V ± 0.2V Control Input Voltage Tolerances are ± 0.2 Vdc.				

DC blocking capacitors are required at ports RFC, Tx and Rx. Inductors are required from Tx to RFC and Rx to RFC. See Application Circuit Herein.

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

Package Information

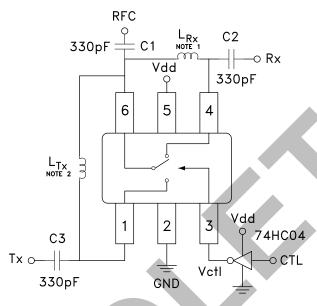
Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC446	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H446 XXXX
HMC446E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	446E XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

GaAs MMIC 10W T/R SWITCH, 824 - 894 MHz*

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	Tx	This pin is DC coupled and matched to 50 Ohms.	
2	GND	This pin must be connected to PCB RF ground.	○ GND =
3	Vetl	See Truth Table.	Vctl O—~~
4	Rx	This pin is DC coupled and matched to 50 Ohms.	
5	Vdd	Supply Voltage	Vdd 0
6	RFC	This pin is DC coupled and matched to 50 Ohms.	



GaAs MMIC 10W T/R SWITCH, 824 - 894 MHz*

Required Application Circuit

Users must implement this application circuit with the HMC446 T/R switch for proper operation.

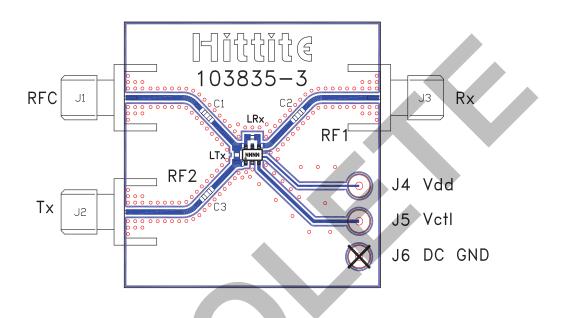
Note 1: $L_{Rx} = COILCRAFT 0402CS - 8N2XJB, 8.2 nH, 5\% Tolerance Inductor$

Note 2: L_{Tv} = COILCRAFT 0603CS - 22NXJB, 22 nH, 5% Tolerance Inductor

Note 3: C1, C2, C3 = 330 pF Capacitor

Note 4: External component values can be adjusted to enable HMC446 to operate in other frequency bands. Contact HMC with your specific requirement.

Note 5: Set logic gate & switch Vdd= +8V and use HC series logic to provide a buffered logic interface.



GaAs MMIC 10W T/R SWITCH, 824 - 894 MHz*

Evaluation PCB

List of Materials for Evaluation PCB 103837 [1]

Item	Description
J1 - J3	PCB Mount SMA RF Connector
J4 - J6	DC Pin
C1 - C3	330 pF Capacitor, 0603 Pkg.
LTx	22 nH Inductor, 0603 Pkg.
LRx	8.2 nH Inductor, 0402 Pkg.
U1	HMC446 / HMC446E T/R Switch
PCB [2]	103835 Evaluation PCB

^[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown above. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board as shown is available from Hittite upon request.